Now showing 1 - 3 of 3
  • 2003Journal Article
    [["dc.bibliographiccitation.firstpage","6200"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Cancer Research"],["dc.bibliographiccitation.lastpage","6205"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Gunawan, Bastian"],["dc.contributor.author","von Heydebreck, Anja"],["dc.contributor.author","Fritsch, T."],["dc.contributor.author","Huber, W."],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Jakse, G."],["dc.contributor.author","Fuzesi, Laszlo"],["dc.date.accessioned","2018-11-07T10:35:38Z"],["dc.date.available","2018-11-07T10:35:38Z"],["dc.date.issued","2003"],["dc.description.abstract","We evaluated clinical characteristics, patient outcome (mean follow-up, 47 months), and cytogenetic abnormalities in the largest as yet reported cytogenetic series of 47 primary and 11 secondary papillary renal cell carcinomas for differences between the recently proposed type 1 and type 2 subtypes. Secondary tumors were more often of type 2 morphology (P = 0.02), whereas primary type 2 tumors were associated with higher clinical stage (P = 0.001) and worse patient outcome (P = 0.02). Although both subtypes had at least one of the primary chromosomal gains at 17q, 7, and 16q, type 2 tumors had moderately lower frequencies of primary gains at 17p (61 versus 94%; P = 0.007) and 17q (72 versus 97%; P = 0.02). On the other hand, type 2 tumors overall had more chromosomal alterations than type 1 tumors (P = 0.01), particularly gains of 1q (28 versus 3%; P = 0.02) and losses of 8p (33 versus 0%; P = 0.001), 11 (28 versus 3%; P = 0.02), and 18 (44 versus 9%; P = 0.01). Hierarchical clustering suggested cytogenetic patterns common but not restricted to type 2 morphology, one characterized by multiple additional gains, and another predominantly showing additional losses. These findings provide genetic evidence that type 1 and type 2 tumors arise from common cytogenetic pathways and that type 2 tumors evolve from type 1 tumors. Independently of type, losses of 9p were statistically correlated with advanced disease (P = 0.0008) and may serve as a potential adverse prognostic marker in papillary renal cell carcinomas."],["dc.identifier.isi","000185967700019"],["dc.identifier.pmid","14559804"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/45137"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Assoc Cancer Research"],["dc.relation.issn","0008-5472"],["dc.title","Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: Evidence for a cytogenetic evolution of type 2 from type 1 tumors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","635"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","649"],["dc.bibliographiccitation.volume","64"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Böttcher, Chotima"],["dc.contributor.author","Holtman, Inge R."],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Rossum, Denise van"],["dc.contributor.author","Götz, Alexander"],["dc.contributor.author","Ernst, Anne-Sophie"],["dc.contributor.author","Fritsche, Christin"],["dc.contributor.author","Gertig, Ulla"],["dc.contributor.author","Saiepour, Nasrin"],["dc.contributor.author","Gronke, Konrad"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Rolfes, Simone"],["dc.contributor.author","Weinstein, Jonathan"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Kopatz, Jens"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Weber, Martin S."],["dc.contributor.author","Prinz, Marco"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Eggen, Bart J. L."],["dc.contributor.author","Boddeke, Hendrikus W. G. M."],["dc.contributor.author","Priller, Josef"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.date.accessioned","2017-09-07T11:45:34Z"],["dc.date.available","2017-09-07T11:45:34Z"],["dc.date.issued","2016"],["dc.description.abstract","Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges."],["dc.identifier.doi","10.1002/glia.22955"],["dc.identifier.gro","3150405"],["dc.identifier.pmid","26683584"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7166"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0894-1491"],["dc.title","CD14 is a key organizer of microglial responses to CNS infection and injury"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","E328"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","E329"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Fritsche, C."],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Hanisch, U.-K."],["dc.date.accessioned","2018-11-07T09:54:18Z"],["dc.date.available","2018-11-07T09:54:18Z"],["dc.date.issued","2015"],["dc.identifier.isi","000356386700558"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36506"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","12th European Meeting on Glial Cell Function in Health and Disease"],["dc.relation.eventlocation","Bilbao, SPAIN"],["dc.relation.issn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.title","CD14 control over microglial TLR4 functions involves an IFNa- mediated feedback mechanism"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS