Now showing 1 - 10 of 20
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","89"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","ZEITSCHRIFT FUR KRISTALLOGRAPHIE"],["dc.bibliographiccitation.lastpage","94"],["dc.bibliographiccitation.volume","222"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2018-11-07T11:07:47Z"],["dc.date.available","2018-11-07T11:07:47Z"],["dc.date.issued","2007"],["dc.description.abstract","Starting with wurtzite-type single crystals, AgI was investigated at room temperature and pressures up to 0.5 GPa by means of a polarizing light microscope and with the precession technique. Distinct orientation relations were observed between four different AgI phases that occur successively under increasing pressure. At 0.35 GPa a reverse-obverse (111) twin of zincblende-type AgI is formed with twin plane parallel to the (001) plane of the wurtzite-type structure. The antilitharge type of AgI occurs at 0.39 GPa. Its tetragonal [001] direction runs parallel to one of the (100) directions of the zincblende type. At almost the same pressure the transformation to the NaCl-type form takes place. This AgI modification shows also twinning on (111) and the basis vectors are oriented parallel to those of the zincblende type. The transition between the zincblende- and the antilitharge-type phase shows a hysteresis: The back transformation occurs at 0.35 GPa. NaCl-type AgI transforms directly to the zincblende-type form at approximately 0.2 GPa when pressure is released. The observed orientation relations between zincblende-, antilitharge- and NaCl-type AgI support transition mechanisms that have been proposed earlier."],["dc.identifier.doi","10.1524/zkri.2007.222.2.89"],["dc.identifier.isi","000244329400006"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/52653"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oldenbourg Verlag"],["dc.relation.issn","0044-2968"],["dc.title","Orientation relations between four phases of AgI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","357"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Acta Crystallographica Section A Foundations and Advances"],["dc.bibliographiccitation.lastpage","365"],["dc.bibliographiccitation.volume","72"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Fischer, Werner"],["dc.date.accessioned","2020-12-10T18:26:01Z"],["dc.date.available","2020-12-10T18:26:01Z"],["dc.date.issued","2016"],["dc.description.abstract","All homogeneous sphere packings were derived that refer to the two invariant, the four univariant and the three bivariant lattice complexes belonging to the monoclinic crystal system. In total, sphere packings of 29 types have been found. Only for five types is the maximal inherent symmetry of their sphere packings monoclinic whereas the inherent symmetry is orthorhombic for nine types, tetragonal for five types, hexagonal for six types and cubic for four types."],["dc.identifier.doi","10.1107/S205327331502450X"],["dc.identifier.eissn","2053-2733"],["dc.identifier.isi","000375147400010"],["dc.identifier.pmid","27126112"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75914"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Int Union Crystallography"],["dc.relation.issn","2053-2733"],["dc.title","Monoclinic sphere packings. I. Invariant, univariant and bivariant lattice complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","1621"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.bibliographiccitation.lastpage","1621"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Xue, Kai"],["dc.contributor.author","Dervisoglu, Riza"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Andreas, Loren B."],["dc.date.accessioned","2021-12-08T12:30:27Z"],["dc.date.available","2021-12-08T12:30:27Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1002/cphc.202000614"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/96444"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-476"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.title","Centerband‐Only Detection of Exchange NMR with Natural‐Abundance Correction Reveals an Expanded Unit Cell in Phenylalanine Crystals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","39"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Acta Crystallographica Section A Foundations and Advances"],["dc.bibliographiccitation.lastpage","45"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2020-12-10T18:26:01Z"],["dc.date.available","2020-12-10T18:26:01Z"],["dc.date.issued","2017"],["dc.description.abstract","Martensitic transformations which play an important role in metallurgical processes are analysed using group-subgroup relations and sphere-packing considerations. This approach is applied to the transformations between body-centred cubic (b.c.c.) and face-centred cubic (f.c.c.) phases and yields the orientation relations according to the Nishiyama-Wassermann, the Kurdjumov-Sachs and the Pitsch mechanisms. The models proposed by Pitsch and Schrader and by Burgers for the transition between b.c.c. and hexagonally closest-packed (h.c.p.) type structures can be interpreted analogously. In addition, two mechanisms for the transition between cubic f.c.c. and h.c.p. structures are described."],["dc.identifier.doi","10.1107/S2053273316013425"],["dc.identifier.eissn","2053-2733"],["dc.identifier.isi","000392194200006"],["dc.identifier.pmid","28042802"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75916"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Int Union Crystallography"],["dc.relation.issn","2053-2733"],["dc.title","Sphere packings as a tool for the description of martensitic phase transformations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","326"],["dc.bibliographiccitation.journal","ACTA CRYSTALLOGRAPHICA SECTION A"],["dc.bibliographiccitation.lastpage","327"],["dc.bibliographiccitation.volume","65"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2018-11-07T08:27:50Z"],["dc.date.available","2018-11-07T08:27:50Z"],["dc.date.issued","2009"],["dc.description.abstract","Three new types of homogeneous interpenetrating sphere packings are described. In the general position of space group Ccce, two sphere packings of type 3/10/o1 can be combined to form interpenetrating sphere packings of type o[3/10/o1](2). The other two types of interpenetrating sphere packings show symmetry Fddd: two packings of type 3/10/t4 are intertwined in o[3/10/t4](2) and three packings of type 3/4/t1 in o[3/4/t1](3). (C) 2009 International Union of Crystallography Printed in Singapore - all rights reserved"],["dc.identifier.doi","10.1107/S0108767309018467"],["dc.identifier.isi","000267088800010"],["dc.identifier.pmid","19535855"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16285"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.relation.issn","0108-7673"],["dc.title","Three new types of interpenetrating sphere packings"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","325"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Acta crystallographica. Section A, Foundations and advances"],["dc.bibliographiccitation.lastpage","335"],["dc.bibliographiccitation.volume","75"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2020-12-10T18:26:03Z"],["dc.date.available","2020-12-10T18:26:03Z"],["dc.date.issued","2019"],["dc.description.abstract","All homogeneous sphere packings were derived that refer to the trivariant lattice complexes of monoclinic space-group types P2/c and P21/c. In total, sphere packings of 55 types have been found. The maximal inherent symmetry is monoclinic for 17 types while the other types comprise at least one sphere packing with cubic (four cases), hexagonal (six cases), tetragonal (eight cases) or orthorhombic (20 cases) symmetry."],["dc.identifier.doi","10.1107/S2053273318015814"],["dc.identifier.eissn","2053-2733"],["dc.identifier.pmid","30821265"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75934"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.eissn","2053-2733"],["dc.relation.issn","2053-2733"],["dc.title","Monoclinic sphere packings. III. Trivariant lattice complexes of P2/c and P21/c"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","23"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","ZEITSCHRIFT FUR KRISTALLOGRAPHIE"],["dc.bibliographiccitation.lastpage","29"],["dc.bibliographiccitation.volume","222"],["dc.contributor.author","Boldyreva, Elena V."],["dc.contributor.author","Shakhtshneider, Tatyana P."],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Ahsbahs, Hans"],["dc.date.accessioned","2018-11-07T11:07:47Z"],["dc.date.available","2018-11-07T11:07:47Z"],["dc.date.issued","2007"],["dc.description.abstract","An in situ X-ray powder diffraction study has shown the cubic modification of (NH4)(2)SiF6 (cryptohalite, space group Fm (3) over barm) at 0.2-0.3 GPa to transform irreversibly into the trigonal bararite, space group P (3) over bar m1. The anisotropy of lattice strain in the high-pressure phase of (NH4)(2)SiF6 was measured up to 6 GPa and compared with that in the trigonal Na2SiF6. The pressure-induced changes in the packing of (SiF6)(2-) anions were analyzed, the changes in the IR-spectra of (SiF6)(2-) ions induced by increasing pressure and on decompression were measured and compared for trigonal (NH4)(2)SiF6 and Na2SiF6."],["dc.identifier.doi","10.1524/zkri.2007.222.1.23"],["dc.identifier.isi","000244989700003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/52652"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oldenbourg Verlag"],["dc.relation.issn","0044-2968"],["dc.title","Effect of hydrostatic pressure up to 6 GPa on the crystal of ammonium and sodium hexafluorosilicates, (NH4)(2)SiF6 Na2SiF6; a phase transition in (NH4)(2)SiF6 at 0.2-0.3 GPa"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","1396"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","CrystEngComm"],["dc.bibliographiccitation.lastpage","1406"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Fabbiani, Francesca P. A."],["dc.contributor.author","Dittrich, Birger"],["dc.contributor.author","Florence, Alastair J."],["dc.contributor.author","Gelbrich, Thomas"],["dc.contributor.author","Hursthouse, Michael B."],["dc.contributor.author","Kuhs, Werner F."],["dc.contributor.author","Shankland, Norman"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2018-11-07T08:34:18Z"],["dc.date.available","2018-11-07T08:34:18Z"],["dc.date.issued","2009"],["dc.description.abstract","Two novel sodium salts of the antibiotic ciprofloxacin were crystallised at pressures of 0.25 and 0.6 GPa and subsequently recovered to ambient pressure. The structures are the first reported examples of ciprofloxacin chelating a Group I Lambda monovalent cation. Ambient-pressure crystallisation of the same solution used for high-pressure experiments, yielded crystals of the known hexahydrate. In a parallel study, the previously unknown structure of anhydrous ciprofloxacin was determined from powder diffraction data. The structures are described and compared using the XPac method."],["dc.description.sponsorship","Alexander von Humboldt Foundation"],["dc.identifier.doi","10.1039/b822987b"],["dc.identifier.isi","000267920400036"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17779"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Royal Soc Chemistry"],["dc.relation.issn","1466-8033"],["dc.title","Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","143"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Acta Crystallographica Section A Foundations and Advances"],["dc.bibliographiccitation.lastpage","147"],["dc.bibliographiccitation.volume","74"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2020-12-10T18:26:03Z"],["dc.date.available","2020-12-10T18:26:03Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1107/S2053273318000475"],["dc.identifier.eissn","2053-2733"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75931"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Monoclinic sphere packings. II. Trivariant lattice complexes with mirror symmetry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","O120"],["dc.bibliographiccitation.journal","Acta Crystallographica Section C Structural Chemistry"],["dc.bibliographiccitation.lastpage","O124"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Fabbiani, Francesca P. A."],["dc.contributor.author","Arlin, Jean-Baptiste"],["dc.contributor.author","Buth, Gernot"],["dc.contributor.author","Dittrich, Birger"],["dc.contributor.author","Florence, Alastair J."],["dc.contributor.author","Herbst-Irmer, Regine"],["dc.contributor.author","Sowa, Heidrun"],["dc.date.accessioned","2018-11-07T08:58:41Z"],["dc.date.available","2018-11-07T08:58:41Z"],["dc.date.issued","2011"],["dc.description.abstract","The antibiotic ciprofloxacin [systematic name: 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydroquinoline-3-carboxylate], has been crystallized as a 2:3 solvate with 2,2-difluoroethanol, 2C(17)H(18)FN(3)O(3)center dot 3C(2)H(4)O(2), (I), and as a 3:14.5 hydrate, 3C(17)H(18)FN(3)O(3)center dot 14.5H(2)O, (II). The structure of (I) was determined using synchrotron X-ray diffraction data and refined as a two-component nonmerohedral twin. Both structures contain several independent molecules in the asymmetric unit: (I) contains two zwitterionic ciprofloxacin molecules and three difluoroethanol solvent molecules, while (II) contains three zwitterionic ciprofloxacin molecules and a mixture of ordered and disordered water molecules. The intermolecular interactions were analysed using fingerprint plots derived from Hirshfeld surfaces, providing a detailed description of the unique environment of each independent ciprofloxacin molecule."],["dc.identifier.doi","10.1107/S0108270111005488"],["dc.identifier.isi","000287974500017"],["dc.identifier.pmid","21368411"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23702"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Int Union Crystallography"],["dc.relation.issn","2053-2296"],["dc.title","Intermolecular interactions, disorder and twinning in ciprofloxacin-2,2-difluoroethanol (2/3) and ciprofloxacin-water (3/14.5)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS