Now showing 1 - 8 of 8
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","199"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Nature computational science"],["dc.bibliographiccitation.lastpage","211"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Tameling, Carla"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Naas, Julia"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Munk, Axel"],["dc.date.accessioned","2021-12-01T10:55:26Z"],["dc.date.available","2021-12-01T10:55:26Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1038/s43588-021-00050-x"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94899"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/242"],["dc.relation","SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften"],["dc.relation","SFB 1456 | Cluster C | C06: Optimal transport based colocalization"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","2662-8457"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Munk"],["dc.title","Colocalization for super-resolution microscopy via optimal transport"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Behr, Tiana S."],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Hübner, Wolfgang"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Pacheu‐Grau, David"],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Huser, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:25:12Z"],["dc.date.available","2021-04-14T08:25:12Z"],["dc.date.issued","2020"],["dc.description.abstract","Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1Fo-ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1Fo-ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae."],["dc.identifier.doi","10.15252/embj.2019104105"],["dc.identifier.pmid","32567732"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81550"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/115"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Möbius"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Riedel"],["dc.rights","CC BY 4.0"],["dc.title","MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","6"],["dc.contributor.author","Faoro, Raffaele"],["dc.contributor.author","Bassu, Margherita"],["dc.contributor.author","Mejia, Yara X."],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Dudani, Nikunj"],["dc.contributor.author","Boeker, Christian"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Burg, Thomas P."],["dc.date.accessioned","2018-01-30T08:10:07Z"],["dc.date.available","2018-01-30T08:10:07Z"],["dc.date.issued","2018"],["dc.description.abstract","Cryogenic fluorescent light microscopy of flash-frozen cells stands out by artifact-free fixation and very little photobleaching of the fluorophores used. To attain the highest level of resolution, aberration-free immersion objectives with accurately matched immersion media are required, but both do not exist for imaging below the glass-transition temperature of water. Here, we resolve this challenge by combining a cryoimmersion medium, HFE-7200, which matches the refractive index of room-temperature water, with a technological concept in which the body of the objective and the front lens are not in thermal equilibrium. We implemented this concept by replacing the metallic front-lens mount of a standard bioimaging water immersion objective with an insulating ceramic mount heated around its perimeter. In this way, the objective metal housing can be maintained at room temperature, while creating a thermally shielded cold microenvironment around the sample and front lens. To demonstrate the range of potential applications, we show that our method can provide superior contrast in Escherichia coli and yeast cells expressing fluorescent proteins and resolve submicrometer structures in multicolor immunolabeled human bone osteosarcoma epithelial (U2OS) cells at [Formula: see text]C."],["dc.identifier.doi","10.1073/pnas.1717282115"],["dc.identifier.pmid","29358380"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11902"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1091-6490"],["dc.title","Aberration-corrected cryoimmersion light microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","603"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Bates, Mark"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Przybylski, Adrian"],["dc.contributor.author","Hüper, Andreas"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Cereceda Delgado, Angel R."],["dc.contributor.author","D’Este, Elisa"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-06-01T09:39:10Z"],["dc.date.available","2022-06-01T09:39:10Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria."],["dc.description.sponsorship"," European Molecular Biology Organization"],["dc.description.sponsorship"," Max-Planck-Gesellschaft"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1038/s41592-022-01465-8"],["dc.identifier.pii","1465"],["dc.identifier.pmid","35577958"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108403"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/175"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/166"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Hell"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Roesch, Axel"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:11:05Z"],["dc.date.available","2020-12-10T18:11:05Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41598-019-48838-2"],["dc.identifier.pmid","31455826"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16769"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73898"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/2"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/23"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A05: Mitochondriale Heterogenität in Synapsen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Live-cell STED nanoscopy of mitochondrial cristae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","20607"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","20614"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Büchner, Rebecca"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2021-04-14T08:24:20Z"],["dc.date.available","2021-04-14T08:24:20Z"],["dc.date.issued","2020"],["dc.description.abstract","The mitochondrial contact site and cristae organizing system (MICOS) is a multisubunit protein complex that is essential for the proper architecture of the mitochondrial inner membrane. MICOS plays a key role in establishing and maintaining crista junctions, tubular or slit-like structures that connect the cristae membrane with the inner boundary membrane, thereby ensuring a contiguous inner membrane. MICOS is enriched at crista junctions, but the detailed distribution of its subunits around crista junctions is unclear because such small length scales are inaccessible with established fluorescence microscopy. By targeting individually activated fluorophores with an excitation beam featuring a central zero-intensity point, the nanoscopy method called MINFLUX delivers single-digit nanometer-scale three-dimensional (3D) resolution and localization precision. We employed MINFLUX nanoscopy to investigate the submitochondrial localization of the core MICOS subunit Mic60 in relation to two other MICOS proteins, Mic10 and Mic19. We demonstrate that dual-color 3D MINFLUX nanoscopy is applicable to the imaging of organellar substructures, yielding a 3D localization precision of ∼5 nm in human mitochondria. This isotropic precision facilitated the development of an analysis framework that assigns localization clouds to individual molecules, thus eliminating a source of bias when drawing quantitative conclusions from single-molecule localization microscopy data. MINFLUX recordings of Mic60 indicate ringlike arrangements of multiple molecules with a diameter of 40 to 50 nm, suggesting that Mic60 surrounds individual crista junctions. Statistical analysis of dual-color MINFLUX images demonstrates that Mic19 is generally in close proximity to Mic60, whereas the spatial coordination of Mic10 with Mic60 is less regular, suggesting structural heterogeneity of MICOS."],["dc.identifier.doi","10.1073/pnas.2009364117"],["dc.identifier.pmid","32788360"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81251"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/61"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/124"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Overview
    [["dc.bibliographiccitation.firstpage","289"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Annual Review of Biophysics"],["dc.bibliographiccitation.lastpage","308"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Brüser, Christian"],["dc.date.accessioned","2021-04-14T08:27:46Z"],["dc.date.available","2021-04-14T08:27:46Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1146/annurev-biophys-121219-081550"],["dc.identifier.pmid","32092283"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82396"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/14"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/105"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/50"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A05: Mitochondriale Heterogenität in Synapsen"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1936-1238"],["dc.relation.issn","1936-122X"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.title","Light Microscopy of Mitochondria at the Nanoscale"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC