Now showing 1 - 7 of 7
  • 2019Journal Article Overview
    [["cris.virtual.author-orcid","0000-0001-6035-4255"],["cris.virtual.author-orcid","0000-0001-7063-5456"],["cris.virtual.department","Universitätsmedizin Göttingen"],["cris.virtual.department","Universitätsmedizin Göttingen"],["cris.virtualsource.author-orcid","47ac62af-19cd-4011-895b-a6ab85d91e81"],["cris.virtualsource.author-orcid","145b86b4-d1b9-4744-8517-cdde207804bc"],["cris.virtualsource.department","47ac62af-19cd-4011-895b-a6ab85d91e81"],["cris.virtualsource.department","145b86b4-d1b9-4744-8517-cdde207804bc"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T18:42:37Z"],["dc.date.available","2020-12-10T18:42:37Z"],["dc.date.issued","2019"],["dc.description.abstract","The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity."],["dc.identifier.doi","10.15252/embj.2018100278"],["dc.identifier.pmid","31088842"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78024"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/70"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Uncovering the assembly pathway of human ribosomes and its emerging links to disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article
    [["cris.virtual.author-orcid","0000-0001-6035-4255"],["cris.virtual.author-orcid","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtual.author-orcid","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtual.author-orcid","0000-0001-7063-5456"],["cris.virtual.department","Universitätsmedizin Göttingen"],["cris.virtual.department","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtual.department","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtual.department","Universitätsmedizin Göttingen"],["cris.virtualsource.author-orcid","47ac62af-19cd-4011-895b-a6ab85d91e81"],["cris.virtualsource.author-orcid","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtualsource.author-orcid","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtualsource.author-orcid","145b86b4-d1b9-4744-8517-cdde207804bc"],["cris.virtualsource.department","47ac62af-19cd-4011-895b-a6ab85d91e81"],["cris.virtualsource.department","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtualsource.department","#PLACEHOLDER_PARENT_METADATA_VALUE#"],["cris.virtualsource.department","145b86b4-d1b9-4744-8517-cdde207804bc"],["dc.bibliographiccitation.journal","Trends in Biochemical Sciences"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Henras, Anthony K."],["dc.contributor.author","Nielsen, Henrik"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2022-11-01T10:16:35Z"],["dc.date.available","2022-11-01T10:16:35Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1016/j.tibs.2022.09.003"],["dc.identifier.pii","S0968000422002407"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116602"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.relation.issn","0968-0004"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Making ends meet: a universal driver of large ribosomal subunit biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Wiley Interdisciplinary Reviews. RNA"],["dc.contributor.author","Schneider, Claudia"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.date.accessioned","2022-11-01T10:17:12Z"],["dc.date.available","2022-11-01T10:17:12Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," Royal Society https://doi.org/10.13039/501100000288"],["dc.identifier.doi","10.1002/wrna.1766"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116754"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.relation.eissn","1757-7012"],["dc.relation.issn","1757-7004"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","Caught in the act—Visualizing ribonucleases during eukaryotic ribosome assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","gkac687"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Kanwal, Nidhi"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2022-09-01T09:50:32Z"],["dc.date.available","2022-09-01T09:50:32Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\r\n Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality."],["dc.identifier.doi","10.1093/nar/gkac687"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113737"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.title","Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022-03-29Journal Article Overview
    [["dc.bibliographiccitation.journal","Trends in Biochemical Sciences"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Kleiber, Nicole"],["dc.contributor.author","Lemus-Diaz, Nicolas"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2022-04-06T07:33:28Z"],["dc.date.available","2022-04-06T07:33:28Z"],["dc.date.issued","2022-03-29"],["dc.description.abstract","Modified nucleotides within cellular RNAs significantly influence their biogenesis, stability, and function. As reviewed here, 3-methylcytidine (m3C) has recently come to the fore through the identification of the methyltransferases responsible for installing m3C32 in human tRNAs. Mechanistic details of how m3C32 methyltransferases recognize their substrate tRNAs have been uncovered and the biogenetic and functional relevance of interconnections between m3C32 and modified adenosines at position 37 highlighted. Functional insights into the role of m3C32 modifications indicate that they influence tRNA structure and, consistently, lack of m3C32 modifications impairs translation. Development of quantitative, transcriptome-wide m3C mapping approaches and the discovery of an m3C demethylase reveal m3C to be dynamic, raising the possibility that it contributes to fine-tuning gene expression in different conditions."],["dc.identifier.doi","10.1016/j.tibs.2022.03.004"],["dc.identifier.pmid","35365384"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/106432"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/468"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/174"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.issn","0968-0004"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Roles and dynamics of 3-methylcytidine in cellular RNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","8074"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","8089"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Lemus-Diaz, Nicolas"],["dc.contributor.author","Ferreira, Rafael Rinaldi"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Gruber, Jens"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2021-04-14T08:24:14Z"],["dc.date.available","2021-04-14T08:24:14Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1093/nar/gkaa549"],["dc.identifier.pmid","32609813"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17489"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81210"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/53"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/116"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation.eissn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","The human box C/D snoRNA U3 is a miRNA source and miR-U3 regulates expression of sortin nexin 27"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1248"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1250"],["dc.bibliographiccitation.volume","179"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T14:22:59Z"],["dc.date.available","2020-12-10T14:22:59Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.cell.2019.11.011"],["dc.identifier.pmid","31761531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71794"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/102"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.title","RNA-Binding Proteins Chaperone Ribonucleoprotein Complex Assembly to Solve the RNA-Folding Problem"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC