Options
Krüger, Sven Philip
Loading...
Preferred name
Krüger, Sven Philip
Official Name
Krüger, Sven Philip
Alternative Name
Krüger, S. P.
Krüger, Sven P.
Krüger, Sven
Krüger, S.
Krueger, Sven Philip
Krueger, Sven P.
Krueger, S. P.
Krueger, Sven
Krueger, S.
Now showing 1 - 10 of 13
2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","227"],["dc.bibliographiccitation.journal","Journal of Synchrotron Radiation"],["dc.bibliographiccitation.lastpage","236"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Wilbrandt, P. J."],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:48:58Z"],["dc.date.available","2017-09-07T11:48:58Z"],["dc.date.issued","2012"],["dc.description.abstract","The propagation of hard X-ray synchrotron beams in waveguides with guiding layer diameters in the 9-35 nm thickness range has been studied. The planar waveguide structures consist of an optimized two-component cladding. The presented fabrication method is suitable for short and leak-proof waveguide slices with lengths (along the optical axis) in the sub-500 mu m range, adapted for optimized transmission at photon energies of 11.5-18 keV. A detailed comparison between finite-difference simulations of waveguide optics and the experimental results is presented, concerning transmission, divergence of the waveguide exit beam, as well as the angular acceptance. In a second step, two crossed waveguides have been used to create a quasi-point source for propagation-based X-ray imaging at the new nano-focus endstation of the P10 coherence beamline at Petra III. By inverting the measured Fraunhofer diffraction pattern by an iterative error-reduction algorithm, a two-dimensional focus of 10 nm x 10 nm is obtained. Finally, holographic imaging of a lithographic test structure based on this optical system is demonstrated."],["dc.identifier.doi","10.1107/S0909049511051983"],["dc.identifier.gro","3142574"],["dc.identifier.isi","000300571300012"],["dc.identifier.pmid","22338684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8940"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0909-0495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC 2.0"],["dc.subject.gro","x-ray optics"],["dc.title","Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Conference Paper [["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Krüger, Sven P"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Mai, Dong-Du"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Hartmann, Britta"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","McNulty, Ian"],["dc.contributor.author","Eyberger, Catherine"],["dc.contributor.author","Lai, Barry"],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1063/1.3625313"],["dc.identifier.gro","3145117"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2818"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","AIP Publishing"],["dc.publisher.place","Melville, NY"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.conference","10th International Conference on X-Ray Microscopy"],["dc.relation.eventend","2010-08-20"],["dc.relation.eventlocation","Chicago, Illinois"],["dc.relation.eventstart","2010-08-15"],["dc.relation.isbn","0-7354-0925-0"],["dc.relation.isbn","978-0-7354-0925-5"],["dc.relation.ispartof","The 10th International Conference on X-Ray Microscopy"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","The Göttingen Holography Endstation of Beamline P10 at PETRA III∕DESY"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article Research Paper [["dc.bibliographiccitation.artnumber","035008"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","New Journal of Physics"],["dc.bibliographiccitation.volume","12"],["dc.contributor.affiliation","Giewekemeyer, K;"],["dc.contributor.affiliation","Neubauer, H;"],["dc.contributor.affiliation","Kalbfleisch, S;"],["dc.contributor.affiliation","Krüger, S P;"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:46:08Z"],["dc.date.available","2017-09-07T11:46:08Z"],["dc.date.issued","2010"],["dc.date.updated","2022-02-09T21:48:01Z"],["dc.description.abstract","We report on lensless nanoscale imaging using x-ray waveguides as ultra-small sources for quasi-point-like illumination. We first give a brief account of the basic optical setup, an overview of the progress in waveguide fabrication and characterization, as well as the basics of image formation. We then compare one-step holographic and iterative ptychographic reconstruction, both for simulated and experimental data collected on samples illuminated by waveguided beams. We demonstrate that scanning the sample with partial overlap can substantially improve reconstruction quality in holographic imaging, and that divergent beams make efficient use of the limited dynamic range of current detectors, regardless of the reconstruction scheme. Among different experimental settings presented, smallest source dimensions of 29 nm (horizontal) x 17 nm have been achieved, using multi-modal interference effects. These values have been determined by ptychographic reconstruction of a Ta test structure at 17.5 keV and have been corroborated by simulations of field propagation inside the waveguide."],["dc.identifier.doi","10.1088/1367-2630/12/3/035008"],["dc.identifier.eissn","1367-2630"],["dc.identifier.fs","568205"],["dc.identifier.gro","3142948"],["dc.identifier.isi","000276349600007"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6673"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/408"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1367-2630"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","Holographic and diffractive x-ray imaging using waveguides as quasi-point sources"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2010Conference Paper [["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Krüger, Sven P"],["dc.contributor.author","Hartmann, Britta"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Leupold, O."],["dc.contributor.author","Siewert, F."],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Garrett, R."],["dc.contributor.author","Gentle, I."],["dc.contributor.author","Nugent, K."],["dc.contributor.author","Wilkins, S."],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1063/1.3463233"],["dc.identifier.gro","3145119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2820"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","AIP Publishing"],["dc.publisher.place","Melville, NY"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.conference","10th International Conference on Synchrotron Radiation Instrumentation"],["dc.relation.eventend","2009-10-02"],["dc.relation.eventlocation","Melbourne, Australia"],["dc.relation.eventstart","2009-09-27"],["dc.relation.isbn","978-0-7354-0782-4"],["dc.relation.ispartof","SRI 2009: the 10th International Conference on Synchrotron Radiation Instrumentation"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","The holography endstation of beamline P10 at PETRA III"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article Research Paper [["dc.bibliographiccitation.artnumber","012175"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","AIP Advances"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Ruhlandt, A."],["dc.contributor.author","Liese, T."],["dc.contributor.author","Radisch, V."],["dc.contributor.author","Krüger, S. P."],["dc.contributor.author","Osterhoff, M."],["dc.contributor.author","Giewekemeyer, K."],["dc.contributor.author","Krebs, H.-U."],["dc.contributor.author","Salditt, T."],["dc.date.accessioned","2017-09-07T11:48:57Z"],["dc.date.available","2017-09-07T11:48:57Z"],["dc.date.issued","2012"],["dc.description.abstract","We have used a combined optical system of a high gain elliptic Kirkpatrick-Baez mirror system (KB) and a multilayer Laue lens (MLL) positioned in the focal plane of the KB for hard x-rays nano-focusing. The two-step focusing scheme is based on a high acceptance and high gain elliptical mirror with moderate focal length and a MLL with ultra-short focal length. Importantly, fabrication constraints, i.e. in mirror polishing and bending, as well as MLL deposition can be significantly relaxed, since (a) the mirror focus in the range of 200-500 nm is sufficient, and (b) the number of layers of the MLL can be correspondingly small. First demonstrations of this setup at the coherence beamline of the PETRA III storage ring yield a highly divergent far-field diffraction pattern, from which the autocorrelation function of the near-field intensity distribution was obtained. The results show that the approach is well suited to reach smallest spot sizes in the sub-10nm range at high flux. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3698119]"],["dc.identifier.doi","10.1063/1.3698119"],["dc.identifier.fs","589570"],["dc.identifier.gro","3142567"],["dc.identifier.isi","000302225400093"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9557"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8932"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.issn","2158-3226"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2008Journal Article Research Paper [["dc.bibliographiccitation.artnumber","184801"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","100"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Fuhse, Christian"],["dc.contributor.author","Bahtz, C."],["dc.date.accessioned","2017-09-07T11:48:44Z"],["dc.date.available","2017-09-07T11:48:44Z"],["dc.date.issued","2008"],["dc.description.abstract","We have studied the propagation of hard x rays in a planar x-ray waveguide with a sub-20 nm guiding layer. To optimize the transmission and to minimize absorption losses, a novel waveguide design based on a two-component cladding was implemented. Optimized transmission is achieved by placing an appropriate interlayer between the cladding and the guiding core. The experimental results along with simulations of field propagation show that high transmission values can be obtained in waveguide optics at parameters relevant for x-ray imaging. These are small beam diameters below 20 nm and the relatively long guiding length necessary for efficient blocking of multi-keV photon energy beams."],["dc.identifier.doi","10.1103/PhysRevLett.100.184801"],["dc.identifier.gro","3143296"],["dc.identifier.isi","000255771400030"],["dc.identifier.pmid","18518380"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/795"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","High-transmission planar x-ray waveguides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","9656"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","9675"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Sprung, Michael"],["dc.date.accessioned","2020-11-05T15:05:24Z"],["dc.date.available","2020-11-05T15:05:24Z"],["dc.date.issued","2011"],["dc.description.abstract","We have studied the spatial coherence properties of a nano-focused x-ray beam by grating (Talbot) interferometry in projection geometry. The beam is focused by a fixed curvature mirror system optimized for high flux density under conditions of partial coherence. The spatial coherence of the divergent exit wave emitted from the mirror focus is measured by Talbot interferometry The results are compared to numerical calculations of coherence propagation. In view of imaging applications, the magnified in-line image of a test pattern formed under conditions of partial coherence is analyzed quantitatively. Finally, additional coherence filtering by use of x-ray waveguides is demonstrated. By insertion of x-ray waveguides, the beam diameter can be reduced from typical values of 200 nm to values below 15 nm. In proportion to the reduction in the focal spot size, the numerical aperture (NA) of the projection imaging system is increased, as well as the coherence length, as quantified by grating interferometry. (C) 2011 Optical Society of America"],["dc.identifier.doi","10.1364/OE.19.009656"],["dc.identifier.gro","3142728"],["dc.identifier.isi","000290490200090"],["dc.identifier.pmid","21643224"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7504"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68458"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.6"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.eissn","1094-4087"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.artnumber","023804"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Physical Review A"],["dc.bibliographiccitation.volume","83"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Beta, C."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:44:21Z"],["dc.date.available","2017-09-07T11:44:21Z"],["dc.date.issued","2011"],["dc.description.abstract","We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryotic amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources."],["dc.identifier.doi","10.1103/PhysRevA.83.023804"],["dc.identifier.gro","3142778"],["dc.identifier.isi","000287029900011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/219"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1050-2947"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","X-ray propagation microscopy of biological cells using waveguides as a quasipoint source"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2012Journal Article Research Paper [["dc.bibliographiccitation.artnumber","10"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Optical Nanoscopy"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Priebe, Marius"],["dc.contributor.author","Wilke, Robin N."],["dc.contributor.author","Krüger, Sven P"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Olendrowitz, Christian"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2012"],["dc.description.abstract","We have imaged the three-dimensional density distribution of unstained and unsliced, freeze-dried cells of the gram-positive bacterium Deinococcus radiodurans by tomographic x-ray propagation microscopy, i.e. projection tomography with phase contrast formation by free space propagation. The work extends previous x-ray imaging of biological cells in the simple in-line holography geometry to full three-dimensional reconstruction, based on a fast iterative phase reconstruction algorithm which circumvents the usual twin-image problem. The sample is illuminated by the highly curved wave fronts emitted from a virtual quasi-point source with 10 nm cross section, realized by two crossed x-ray waveguides. The experimental scheme allows for a particularly dose efficient determination of the 3D density distribution in the cellular structure."],["dc.identifier.doi","10.1186/2192-2853-1-10"],["dc.identifier.fs","593648"],["dc.identifier.gro","3145116"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9581"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2817"],["dc.language.iso","en"],["dc.notes","Funding by the DFG collaborative research center SFB 755\r\nNanoscale Photonic Imaging and the German Ministry of Education and\r\nResearch (Grant No. 05K10MGA) is gratefully acknowledged."],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2192-2853"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Low-dose three-dimensional hard x-ray imaging of bacterial cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2011Thesis [["dc.bibliographiccitation.seriesnr","2"],["dc.contributor.author","Krüger, Sven Philip"],["dc.date.accessioned","2018-05-03T10:42:33Z"],["dc.date.available","2018-05-03T10:42:33Z"],["dc.date.issued","2011"],["dc.description.abstract","Lensless x-ray imaging is a promising method to determine the three-dimensional structure of material science and biological specimens at the nanoscale. The development of this technique is strongly related to the optimization of x-ray optics since the image formation and object reconstruction depend significantly on the properties of the illumination wave-field. Waveguide optics act as quasi-point sources and enable the spatial and coherent filtering of x-ray beams. Up to now, x-ray waveguides were severely limited in transmission and flux, restricting their use to high-contrast test structures with moderate resolution and long accumulation times. To overcome these limitations, a novel waveguide design with an optimized refractive index profile is presented which significantly minimizes the absorption of the modes propagating inside the waveguide. Experimental results along with simulations show that these two-component planar x-ray waveguides provide small beam cross-sections along with a high photon flux at the exit. By a serial arrangement of two waveguide slices an optimized illumination source has been developed for high-resolution microscopy, as demonstrated in proof-of-concept imaging experiments."],["dc.format.extent","III, 154"],["dc.identifier.doi","10.17875/gup2011-78"],["dc.identifier.isbn","978-3-86395-015-6"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7046"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?isbn-978-3-86395-015-6"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13918"],["dc.identifier.urn","urn:nbn:de:gbv:7-isbn-978-3-86395-015-6-1"],["dc.notes.intern","TASK GROB-550"],["dc.notes.status","zu prüfen"],["dc.publisher","Universitätsverlag Göttingen"],["dc.publisher.place","Göttingen"],["dc.relation.crisseries","Göttingen Series in X-Ray Physics"],["dc.relation.ispartofseries","Göttingen Series in x-ray Physics; 02"],["dc.rights","CC BY-ND 3.0"],["dc.rights.uri","http://creativecommons.org/licenses/by-nd/3.0/de"],["dc.title","Optimization of waveguide optics for lensless x-ray imaging"],["dc.type","thesis"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI