Now showing 1 - 7 of 7
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Conference Abstract
    [["dc.bibliographiccitation.journal","Journal of Neurology"],["dc.bibliographiccitation.volume","258"],["dc.contributor.author","Buechner, Bernd"],["dc.contributor.author","Wittig, Ilka"],["dc.contributor.author","Schaegger, H."],["dc.contributor.author","Schols, Ludger"],["dc.contributor.author","Rapaport, D."],["dc.contributor.author","Dimmer, K."],["dc.contributor.author","Prokisch, Holger"],["dc.contributor.author","Schuelke-Gerstenfeld, M."],["dc.contributor.author","Seelow, D."],["dc.contributor.author","Freisinger, Peter"],["dc.contributor.author","Sperl, Wolfgang"],["dc.contributor.author","Kunz, W."],["dc.contributor.author","Abicht, Angela"],["dc.contributor.author","Schneiderat, P."],["dc.contributor.author","Yilmaz, A."],["dc.contributor.author","Kuhn, K."],["dc.contributor.author","Saft, Carsten"],["dc.contributor.author","Guettsches, A."],["dc.contributor.author","Kornblum, Cornelia"],["dc.contributor.author","Schaefer, J."],["dc.contributor.author","Deschauer, M."],["dc.contributor.author","Knop, K. C."],["dc.contributor.author","Korinthenberg, Rudolf"],["dc.contributor.author","Wilichowski, E."],["dc.contributor.author","Ebinger, Friedrich"],["dc.contributor.author","von Kleist-Retzow, J."],["dc.contributor.author","Mueller-Felber, Wolfgang"],["dc.contributor.author","Woernle, S."],["dc.contributor.author","Kraegeloh-Mann, Ingeborg"],["dc.contributor.author","Obermaier-Kusser, B."],["dc.contributor.author","Meitinger, Thomas"],["dc.contributor.author","Klopstock, Thomas"],["dc.date.accessioned","2018-11-07T08:56:33Z"],["dc.date.available","2018-11-07T08:56:33Z"],["dc.date.issued","2011"],["dc.format.extent","197"],["dc.identifier.isi","000289992800563"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23183"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.eventlocation","Lisbon, PORTUGAL"],["dc.relation.issn","0340-5354"],["dc.title","mitoNET-German network for mitochondrial disorders: progress report after 2 years duration"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","jcs211110"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Vitali, Daniela G."],["dc.contributor.author","Sinzel, Monika"],["dc.contributor.author","Bulthuis, Elianne P."],["dc.contributor.author","Kolb, Antonia"],["dc.contributor.author","Zabel, Susanne"],["dc.contributor.author","Mehlhorn, Dietmar G."],["dc.contributor.author","Figueiredo Costa, Bruna"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Grefen, Christopher"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Borgese, Nica"],["dc.contributor.author","Rapaport, Doron"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1242/jcs.211110"],["dc.identifier.pmid","29661846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77708"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/60"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","610"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","British Journal of Dermatology"],["dc.bibliographiccitation.lastpage","616"],["dc.bibliographiccitation.volume","164"],["dc.contributor.author","Fuchs-Telem, D."],["dc.contributor.author","Stewart, Helen S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Nousbeck, J."],["dc.contributor.author","Gat, A."],["dc.contributor.author","Gini, M."],["dc.contributor.author","Lugassy, Y."],["dc.contributor.author","Emmert, Steffen"],["dc.contributor.author","Eckl, K."],["dc.contributor.author","Hennies, Hans Christian"],["dc.contributor.author","Sarig, Ofer"],["dc.contributor.author","Goldsher, D."],["dc.contributor.author","Meilik, B."],["dc.contributor.author","Ishida-Yamamoto, A."],["dc.contributor.author","Horowitz, Mia"],["dc.contributor.author","Sprecher, Eli"],["dc.date.accessioned","2018-11-07T08:58:42Z"],["dc.date.available","2018-11-07T08:58:42Z"],["dc.date.issued","2011"],["dc.description.abstract","P>Background CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis and keratoderma) syndrome is a rare genodermatosis which was shown 5 years ago in one family to be associated with a loss-of-function mutation in SNAP29, encoding a member of the SNARE family of proteins. Decrease in SNAP29 expression was found to result in abnormal lamellar granule maturation leading to aberrant epidermal differentiation and ichthyosis. Objectives To delineate the molecular consequences of disease-causing mutations in SNAP29. Methods We used direct sequencing, in vitro mutagenesis and three-dimensional organotypic cell cultures. Results We identified a novel homozygous insertion in SNAP29 (c.486insA) in two sibs presenting with ichthyosis and dysgenesis of the corpus callosum. In vitro transfection experiments indicated that this mutation results in SNAP29 loss-of-function. Further substantiating this notion, we could replicate histological features typical for CEDNIK syndrome in three-dimensional primary human keratinocyte organotypic cell cultures downregulated for SNAP29. Conclusions The identification of a second mutation in SNAP29 in the present study definitely establishes a causal relationship between defective function of SNAP29 and the pleiotropic manifestations of CEDNIK syndrome. Our present and previous data position SNAP29 as an essential component of the epidermal differentiation machinery."],["dc.identifier.doi","10.1111/j.1365-2133.2010.10133.x"],["dc.identifier.isi","000288076200024"],["dc.identifier.pmid","21073448"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23707"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","0007-0963"],["dc.title","CEDNIK syndrome results from loss-of-function mutations in SNAP29"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","689"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The American Journal of Human Genetics"],["dc.bibliographiccitation.lastpage","697"],["dc.bibliographiccitation.volume","95"],["dc.contributor.author","Synofzik, Matthis"],["dc.contributor.author","Haack, Tobias B."],["dc.contributor.author","Kopajtich, Robert"],["dc.contributor.author","Gorza, Matteo"],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Greiner, Markus"],["dc.contributor.author","Schoenfeld, Caroline"],["dc.contributor.author","Freiberg, Clemens"],["dc.contributor.author","Schorr, Stefan"],["dc.contributor.author","Holl, Reinhard W."],["dc.contributor.author","Gonzalez, Michael A."],["dc.contributor.author","Fritsche, Andreas"],["dc.contributor.author","Fallier-Becker, Petra"],["dc.contributor.author","Zimmermann, Richard"],["dc.contributor.author","Strom, Tim-Mathias"],["dc.contributor.author","Meitinger, Thomas"],["dc.contributor.author","Zuechner, Stephan"],["dc.contributor.author","Schuele, Rebecca"],["dc.contributor.author","Schoels, Ludger"],["dc.contributor.author","Prokisch, Holger"],["dc.date.accessioned","2018-11-07T09:31:29Z"],["dc.date.available","2018-11-07T09:31:29Z"],["dc.date.issued","2014"],["dc.description.abstract","Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy. Exome sequencing identified a homozygous stop mutation in DNAIC3. Screening of a diabetes database with 226,194 individuals yielded eight phenotypically similar individuals and one family carrying a homozygous DNAJC3 deletion. DNAJC3 was absent in fibroblasts from all affected subjects in both families. To delineate the phenotypic and mutational spectrum and the genetic variability of DNAJC3, we analyzed 8,603 exomes, including 506 from families affected by diabetes, ataxia, upper-motor-neuron damage, peripheral neuropathy, or hearing loss. This analysis revealed only one further loss-of-function allele in DNAIC3 and no further associations in subjects with only a subset of the features of the main phenotype. Our findings. demonstrate that loss-of-function DNAJC3 mutations lead to a monogenic, recessive form of diabetes mellitus in humans. Moreover, they present a common denominator for diabetes and widespread neurodegeneration. This complements findings from mice in which knockout of Dnajc3 leads to diabetes and modifies disease in a neurodegenerative model of Marinesco-Sjogren syndrome."],["dc.identifier.doi","10.1016/j.ajhg.2014.10.013"],["dc.identifier.isi","000346623100005"],["dc.identifier.pmid","25466870"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31542"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.relation.issn","1537-6605"],["dc.relation.issn","0002-9297"],["dc.title","Absence of BiP Co-chaperone DNAJC3 Causes Diabetes Mellitus and Multisystemic Neurodegeneration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Conference Abstract
    [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Experimental Dermatology"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Schiller, S."],["dc.contributor.author","Seebode, Christina"],["dc.contributor.author","Wieser, G."],["dc.contributor.author","Goebbels, Sandra"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Horowitz, Mia"],["dc.contributor.author","Rapaport, D."],["dc.contributor.author","Sarig, Ofer"],["dc.contributor.author","Sprecher, Eli"],["dc.contributor.author","Emmert, Steffen"],["dc.date.accessioned","2018-11-07T10:17:17Z"],["dc.date.available","2018-11-07T10:17:17Z"],["dc.date.issued","2016"],["dc.format.extent","E4"],["dc.identifier.isi","000373072800022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41200"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","43rd Annual Meeting of the Arbeitsgemeinschaft-Dermatologische-Forschung-e-V (ADF)"],["dc.relation.eventlocation","Vienna, AUSTRIA"],["dc.relation.issn","1600-0625"],["dc.relation.issn","0906-6705"],["dc.title","Non-keratinocyte SNAP29 influences epidermal differentiation and hair follicle formation in mice"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of molecular medicine (Berlin, Germany)"],["dc.bibliographiccitation.lastpage","279"],["dc.bibliographiccitation.volume","97"],["dc.contributor.author","Antunes, Diana"],["dc.contributor.author","Chowdhury, Arpita"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Saladi, Sreedivya"],["dc.contributor.author","Harpaz, Nofar"],["dc.contributor.author","Stahl, Mark"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rapaport, Doron"],["dc.date.accessioned","2019-08-07T11:33:10Z"],["dc.date.available","2019-08-07T11:33:10Z"],["dc.date.issued","2019"],["dc.description.abstract","The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH."],["dc.identifier.doi","10.1007/s00109-018-1728-4"],["dc.identifier.pmid","30604168"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62341"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/250"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.eissn","1432-1440"],["dc.relation.issn","0946-2716"],["dc.relation.issn","1432-1440"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC