Now showing 1 - 10 of 55
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","171902"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Applied Physics Letters"],["dc.bibliographiccitation.volume","105"],["dc.contributor.author","Maass, Robert"],["dc.contributor.author","Samwer, Konrad H."],["dc.contributor.author","Arnold, Walter"],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2018-11-07T09:33:24Z"],["dc.date.available","2018-11-07T09:33:24Z"],["dc.date.issued","2014"],["dc.description.abstract","Two dimensional mapping of structural properties near a single shear band in a Zr-based bulk metallic glass reveals the presence of hardness and modulus reductions at a micrometer length scale. The isolated shear band had carried all the macroscopic plastic strain and the material near the shear-band exhibits structural variations both along and normal to the shear plane. Analyzing the nanoindentation data indicates that long range internal stresses are the primary cause of the spatially varying structure. The results demonstrate that a nano-scale defect in a metallic glass may have a micrometer range signature. (C) 2014 AIP Publishing LLC."],["dc.identifier.doi","10.1063/1.4900791"],["dc.identifier.isi","000344588600018"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31956"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1077-3118"],["dc.relation.issn","0003-6951"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","A single shear band in a metallic glass: Local core and wide soft zone"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","3048"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","3052"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Richter, Gunther"],["dc.contributor.author","Hillerich, Karla"],["dc.contributor.author","Gianola, Daniel S."],["dc.contributor.author","Moenig, Reiner"],["dc.contributor.author","Kraft, Oliver"],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2018-11-07T08:27:27Z"],["dc.date.available","2018-11-07T08:27:27Z"],["dc.date.issued","2009"],["dc.description.abstract","The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities."],["dc.identifier.doi","10.1021/nl9015107"],["dc.identifier.isi","000268797200043"],["dc.identifier.pmid","19637912"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16207"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Chemical Soc"],["dc.relation.issn","1530-6992"],["dc.relation.issn","1530-6984"],["dc.title","Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","22"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Metals"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Tian, Lin"],["dc.contributor.author","Tönnies, Dominik"],["dc.contributor.author","Hirsbrunner, Moritz"],["dc.contributor.author","Sievert, Tim"],["dc.contributor.author","Shan, Zhiwei"],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2020-12-10T18:47:15Z"],["dc.date.available","2020-12-10T18:47:15Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2019"],["dc.identifier.doi","10.3390/met10010022"],["dc.identifier.eissn","2075-4701"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17092"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78696"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","MDPI"],["dc.relation.eissn","2075-4701"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Effect of Hydrogen Charging on Pop-in Behavior of a Zr-Based Metallic Glass"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","1702473"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","43"],["dc.bibliographiccitation.journal","Advanced Materials"],["dc.bibliographiccitation.lastpage","8"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Wang, Yonggui"],["dc.contributor.author","Groszewicz, Pedro Braga"],["dc.contributor.author","Rosenfeldt, Sabine"],["dc.contributor.author","Schmidt, Hendrik"],["dc.contributor.author","Volkert, Cynthia A."],["dc.contributor.author","Vana, Philipp"],["dc.contributor.author","Gutmann, Torsten"],["dc.contributor.author","Buntkowsky, Gerd"],["dc.contributor.author","Zhang, Kai"],["dc.date.accessioned","2018-08-14T16:15:11Z"],["dc.date.accessioned","2020-05-14T13:29:54Z"],["dc.date.available","2018-08-14T16:15:11Z"],["dc.date.available","2020-05-14T13:29:54Z"],["dc.date.issued","2017"],["dc.description.abstract","Self-assembly of nanoparticles (NPs) forming unique structures has been investigated extensively over the past few years. However, many self-assembled structures by NPs are irreversible, because they are generally constructed using their suspensions. It is still challenging for NPs to reversibly self-assemble in dry state, let alone of polymeric NPs with general sizes of hundreds of nm. Herein, this study reports a new reversible self-assembly phenomenon of NPs in dry state, forming thermoreversible strip-like supermolecular structures. These novel NPs of around 150 nm are perfluorinated surface-undecenoated cellulose nanoparticles (FSU-CNPs) with a core-coronas structure. The thermoreversible self-assembled structure is formed after drying in the air at the interface between FSU-CNP films and Teflon substrates. Remarkably, the formation and dissociation of this assembled structure are accompanied by a reversible conversion of the surface hydrophobicity, film transparency, and anisotropic properties. These findings show novel feasibility of reversible self-assembly of NPs in dry state, and thereby expand our knowledge of self-assembly phenomenon."],["dc.identifier.doi","10.1002/adma.201702473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/65433"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15301"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Thermo-Reversible Self-Assembly of Perfluorinated Core-Coronas Cellulose-Nanoparticles in Dry State"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","337"],["dc.bibliographiccitation.journal","Acta Materialia"],["dc.bibliographiccitation.lastpage","343"],["dc.bibliographiccitation.volume","140"],["dc.contributor.author","Mangipudi, K. R."],["dc.contributor.author","Epler, E."],["dc.contributor.author","Volkert, C. A."],["dc.date.accessioned","2020-12-10T14:14:52Z"],["dc.date.available","2020-12-10T14:14:52Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.actamat.2017.08.039"],["dc.identifier.issn","1359-6454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71528"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Morphological similarity and structure-dependent scaling laws of nanoporous gold from different synthesis methods"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Physical Review Materials"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Schmidt, H."],["dc.contributor.author","Krisponeit, J.-O."],["dc.contributor.author","Weber, N."],["dc.contributor.author","Samwer, K."],["dc.contributor.author","Volkert, Cynthia Ann"],["dc.date.accessioned","2021-04-14T08:24:21Z"],["dc.date.available","2021-04-14T08:24:21Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1103/PhysRevMaterials.4.113610"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81256"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area A | A01 Reibung unter aktiver Kontrolle in Systemen mit optimierten Freiheitsgraden"],["dc.relation.eissn","2475-9953"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Switching friction at a manganite surface using electric fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33"],["dc.bibliographiccitation.journal","Materials Science & Engineering. A, Structural Materials"],["dc.bibliographiccitation.lastpage","38"],["dc.bibliographiccitation.volume","610"],["dc.contributor.author","Wang, D."],["dc.contributor.author","Gruber, Patric A."],["dc.contributor.author","Volkert, Cynthia A."],["dc.contributor.author","Kraft, Oliver"],["dc.date.accessioned","2018-11-07T09:37:29Z"],["dc.date.available","2018-11-07T09:37:29Z"],["dc.date.issued","2014"],["dc.description.abstract","Fatigue behavior of 100 nm and 1.0 mu m thick Cu films with 10 nm Ta passivation layers has been studied using cyclic tensile testing. The results show that Ta capping-layer has influences on fatigue damage by suppression of extrusion formation and, thereby, improved the fatigue life dramatically in the 1.0 gm thick Cu film, but does not change the fatigue life of 100 nm thick Cu film for which crack formation is the dominant damage mechanism. (C) 2014 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.msea.2014.05.024"],["dc.identifier.isi","000339457800007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32852"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1873-4936"],["dc.relation.issn","0921-5093"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Influences of Ta passivation layers on the fatigue behavior of thin Cu films"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","18"],["dc.bibliographiccitation.journal","Scripta Materialia"],["dc.bibliographiccitation.lastpage","23"],["dc.bibliographiccitation.volume","178"],["dc.contributor.author","Brede, Thomas"],["dc.contributor.author","Kirchheim, Reiner"],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2020-12-10T15:21:16Z"],["dc.date.available","2020-12-10T15:21:16Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.scriptamat.2019.10.048"],["dc.identifier.issn","1359-6462"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72968"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Anisotropic grain growth in iron-carbon films at high electric current densities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","115"],["dc.bibliographiccitation.journal","Acta Materialia"],["dc.bibliographiccitation.lastpage","122"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Mangipudi, Kodanda Ram"],["dc.contributor.author","Epler, Eike"],["dc.contributor.author","Volkert, Cynthia A."],["dc.date.accessioned","2018-11-07T10:07:01Z"],["dc.date.available","2018-11-07T10:07:01Z"],["dc.date.issued","2016"],["dc.description.abstract","Nanoporous gold (np-Au) differs from its macroporous counterparts through its ligament and pore length scales, its high relative density, and its very distinct mesoscale cellular architecture. When reexamining the applicability of conventional macroporous foam scaling laws to np-Au, difficulties persist not only in determining the solid properties of nanoscale ligaments, but also because np-Au structure is not self-similar as the relative density changes. Thus, a clear distinction of the effects of relative density and structure is required. This paper aims to capture the role of topology and morphology into the scaling laws by comparing the overall mechanical response of real np-Au structures with the behavior of spinodal and gyroid structures. Quantitative morphological and topological characterization of these structures has been carried out and their role on the macroscopic elastoplastic response of np-Au has been studied using finite element (FE) simulations. The predicted elastic modulus of real np-Au structures from FE simulations is in remarkable agreement with the nanoindentation measurements, and validates the numerical simulations. Quantitative structural analysis reveals that np-Au and spinodal structures are topologically very distinct, but similar in their morphology. On the other hand, gyroids are both morphologically and topologically very distinct from np-Au. The results suggest that the macroscopic stiffness and strength are highly sensitive to the topology, while being relatively much less sensitive to the morphology. The effects of structural topology are captured into modified scaling laws where the geometric pre-factors for the stiffness and strength are found to vary linearly with the scaled genus. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved."],["dc.description.sponsorship","DFG [MA 5785/1-1, VO 928/8-1]"],["dc.identifier.doi","10.1016/j.actamat.2016.08.012"],["dc.identifier.isi","000384778300011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39201"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1873-2453"],["dc.relation.issn","1359-6454"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Topology-dependent scaling laws for the stiffness and strength of nanoporous gold"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","557"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Microscopy and Microanalysis"],["dc.bibliographiccitation.lastpage","563"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Pfeiffer, Bjoern"],["dc.contributor.author","Erichsen, Torben"],["dc.contributor.author","Epler, Eike"],["dc.contributor.author","Volkert, Cynthia A."],["dc.contributor.author","Trompenaars, Piet"],["dc.contributor.author","Nowak, Carsten"],["dc.date.accessioned","2018-11-07T09:56:15Z"],["dc.date.available","2018-11-07T09:56:15Z"],["dc.date.issued","2015"],["dc.description.abstract","A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co-2(CO)(8)] and diiron nonacarbonyl [Fe-2(CO)(9)]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT."],["dc.identifier.doi","10.1017/S1431927615000501"],["dc.identifier.isi","000358836400003"],["dc.identifier.pmid","25990813"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36918"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1435-8115"],["dc.relation.issn","1431-9276"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Characterization of Nanoporous Materials with Atom Probe Tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS