Now showing 1 - 4 of 4
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","607"],["dc.bibliographiccitation.issue","7720"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","612"],["dc.bibliographiccitation.volume","560"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Boehning, Marc"],["dc.contributor.author","Wigge, Christoph"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2020-12-10T18:09:59Z"],["dc.date.available","2020-12-10T18:09:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41586-018-0440-4"],["dc.identifier.eissn","1476-4687"],["dc.identifier.issn","0028-0836"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Structure of activated transcription complex Pol II–DSIF–PAF–SPT6"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","204"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","209"],["dc.bibliographiccitation.volume","551"],["dc.contributor.author","Schilbach, S."],["dc.contributor.author","Hantsche, M."],["dc.contributor.author","Tegunov, D."],["dc.contributor.author","Dienemann, C."],["dc.contributor.author","Wigge, C."],["dc.contributor.author","Urlaub, H."],["dc.contributor.author","Cramer, P."],["dc.date.accessioned","2018-01-09T12:04:30Z"],["dc.date.available","2018-01-09T12:04:30Z"],["dc.date.issued","2017"],["dc.description.abstract","For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II."],["dc.identifier.doi","10.1038/nature24282"],["dc.identifier.pmid","29088706"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11583"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1476-4687"],["dc.title","Structures of transcription pre-initiation complex with TFIIH and Mediator"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","7189"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","7194"],["dc.bibliographiccitation.volume","293"],["dc.contributor.author","Liu, Xiangyang"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Wigge, Christoph"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-03-01T11:46:29Z"],["dc.date.available","2022-03-01T11:46:29Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1074/jbc.RA118.002545"],["dc.identifier.pii","S0021925820392048"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103688"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0021-9258"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","539"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","542"],["dc.bibliographiccitation.volume","550"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Vos, Seychelle M."],["dc.contributor.author","Wigge, Christoph"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2018-01-09T12:17:11Z"],["dc.date.available","2018-01-09T12:17:11Z"],["dc.date.issued","2017"],["dc.description.abstract","Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1) can shift nucleosomes and induce regular nucleosome spacing. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes and for cellular pluripotency. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) -7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome-Snf2 ATPase structure. Comparisons with published results reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence or presence, respectively, of transition state-mimicking compounds."],["dc.identifier.doi","10.1038/nature24046"],["dc.identifier.pmid","29019976"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11585"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1476-4687"],["dc.title","Nucleosome-Chd1 structure and implications for chromatin remodelling"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC