Now showing 1 - 10 of 128
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1194"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Russian Journal of Genetics"],["dc.bibliographiccitation.lastpage","1199"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Oreshkova, N. V."],["dc.contributor.author","Putintseva, Yu. A."],["dc.contributor.author","Sharov, V. V."],["dc.contributor.author","Kuzmin, D. A."],["dc.contributor.author","Krutovsky, K. V."],["dc.date.accessioned","2020-12-10T18:37:10Z"],["dc.date.available","2020-12-10T18:37:10Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1134/S1022795417110096"],["dc.identifier.eissn","1608-3369"],["dc.identifier.issn","1022-7954"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76864"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Development of microsatellite genetic markers in Siberian larch (Larix sibirica Ledeb.) based on the de novo whole genome sequencing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6798"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.lastpage","6809"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Lu, Mengmeng"],["dc.contributor.author","Loopstra, Carol A."],["dc.contributor.author","Krutovsky, Konstantin V."],["dc.creator.author","Mengmeng Lu"],["dc.creator.author","Carol A. Loopstra"],["dc.creator.author","Konstantin V. Krutovsky"],["dc.date.accessioned","2020-12-10T14:06:03Z"],["dc.date.accessioned","2022-08-18T11:50:34Z"],["dc.date.available","2020-12-10T14:06:03Z"],["dc.date.available","2022-08-18T11:50:34Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/ece3.5225"],["dc.identifier.eissn","2045-7758"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16546"],["dc.identifier.scopus","2-s2.0-85069965085"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69759"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112825"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Detecting the genetic basis of local adaptation in loblolly pine ( Pinus taeda L.) using whole exome‐wide genotyping and an integrative landscape genomics analysis approach"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","444"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Russian Journal of Genetics"],["dc.bibliographiccitation.lastpage","450"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Oreshkova, N. V."],["dc.contributor.author","Bondar, E. I."],["dc.contributor.author","Putintseva, Yu. A."],["dc.contributor.author","Sharov, V. V."],["dc.contributor.author","Kuzmin, D. A."],["dc.contributor.author","Krutovsky, K. V."],["dc.date.accessioned","2020-12-10T18:37:10Z"],["dc.date.available","2020-12-10T18:37:10Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1134/S1022795419040094"],["dc.identifier.eissn","1608-3369"],["dc.identifier.issn","1022-7954"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76865"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Development of Nuclear Microsatellite Markers with Long (Tri-, Tetra-, Penta-, and Hexanucleotide) Motifs for Three Larch Species Based on the de novo Whole Genome Sequencing of Siberian Larch (Larix sibirica Ledeb.)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022-11-28Journal Article
    [["dc.bibliographiccitation.artnumber","776"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Genomics"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Kersten, Birgit"],["dc.contributor.author","Rellstab, Christian"],["dc.contributor.author","Schroeder, Hilke"],["dc.contributor.author","Brodbeck, Sabine"],["dc.contributor.author","Fladung, Matthias"],["dc.contributor.author","Krutovsky, Konstantin V."],["dc.contributor.author","Gugerli, Felix"],["dc.date.accessioned","2022-12-05T09:15:16Z"],["dc.date.available","2022-12-05T09:15:16Z"],["dc.date.issued","2022-11-28"],["dc.date.updated","2022-12-04T04:11:00Z"],["dc.description.abstract","Abstract\r\n \r\n Background\r\n Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied.\r\n \r\n \r\n Results\r\n Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs.\r\n \r\n \r\n Conclusions\r\n The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research."],["dc.identifier.citation","BMC Genomics. 2022 Nov 28;23(1):776"],["dc.identifier.doi","10.1186/s12864-022-08993-9"],["dc.identifier.pii","8993"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118428"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1471-2164"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Silver fir"],["dc.subject","Mitochondrial genome"],["dc.subject","Genome assembly"],["dc.subject","Long-read sequencing"],["dc.subject","Repetitive elements"],["dc.subject","mtDNA"],["dc.title","The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 1989Book Chapter
    [["dc.contributor.author","Glazko, V. I."],["dc.contributor.author","Koval, S. F."],["dc.contributor.author","Krutovskii, K. V."],["dc.creator.author","GLAZKO V I"],["dc.creator.author","KOVAL' S F"],["dc.creator.author","KRUTOVSKII K V"],["dc.date.accessioned","2022-08-18T12:03:06Z"],["dc.date.available","2022-08-18T12:03:06Z"],["dc.date.issued","1989"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112837"],["dc.relation.ispartof","Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel'skokhozyaistvennykh Nauk Imeni V I Lenina"],["dc.title","Allele Frequency of Gliadin-Coding Loci as a Factor of Breeding Conditions"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details
  • 1983Journal Article Research Paper
    [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Soviet genetics : cover-to-cover translation of \"Genetika\""],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Cholakova, N. I."],["dc.contributor.author","Gyulemetova, R. N."],["dc.contributor.author","Krutovskii, K. V."],["dc.contributor.author","Milishnikov, A. N."],["dc.creator.author","CHOLAKOVA N I"],["dc.creator.author","GYULEMETOVA R N"],["dc.creator.author","KRUTOVSKII K V"],["dc.creator.author","MILISHNIKOV A N"],["dc.date.accessioned","2022-08-16T13:37:05Z"],["dc.date.available","2022-08-16T13:37:05Z"],["dc.date.issued","1983"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112780"],["dc.relation.issn","0038-5409"],["dc.title","Induced Mutation Frequencies in the Allozyme Loci at Different Ontogenetic Stages of Drosophila-Melanogaster"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details
  • 1989Journal Article Research Paper
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Genetika"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Krutovsky, K. V."],["dc.contributor.author","Politov, D. V."],["dc.contributor.author","Altukhov Yu., P."],["dc.contributor.author","Milyutin, L. I."],["dc.contributor.author","Kuznetsova, G. V."],["dc.contributor.author","Iroshnikov, A. I."],["dc.contributor.author","Vorobyev, V. N."],["dc.contributor.author","Vorobyeva, N. A."],["dc.creator.author","Krutovsky, K.V."],["dc.creator.author","Politov, D.V."],["dc.creator.author","Altukhov Yu., P."],["dc.creator.author","Milyutin, L.I."],["dc.creator.author","Kuznetsova, G.V."],["dc.creator.author","Iroshnikov, A.I."],["dc.creator.author","Vorobyev, V.N."],["dc.creator.author","Vorobyeva, N.A."],["dc.date.accessioned","2022-08-18T11:50:28Z"],["dc.date.available","2022-08-18T11:50:28Z"],["dc.date.issued","1989"],["dc.identifier.scopus","2-s2.0-0024377231"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112824"],["dc.identifier.url","http://www.scopus.com/inward/record.url?eid=2-s2.0-0024377231&partnerID=MN8TOARS"],["dc.title","Genetic variability in Siberian cedar pine, Pinus Sibirica Du Tour. IV. Genetic diversity and differentiation between populations"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details
  • 1983Journal Article Research Paper
    [["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Genetika"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Krutovsky, K. V."],["dc.contributor.author","Milishnikov, A. N."],["dc.creator.author","Krutovsky, K.V."],["dc.creator.author","Milishnikov, A.N."],["dc.date.accessioned","2022-08-18T12:02:18Z"],["dc.date.available","2022-08-18T12:02:18Z"],["dc.date.issued","1983"],["dc.identifier.scopus","2-s2.0-0021081611"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112831"],["dc.identifier.url","http://www.scopus.com/inward/record.url?eid=2-s2.0-0021081611&partnerID=MN8TOARS"],["dc.title","Selection against induced mutations of Drosophila melanogaster allozyme loci"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e0116528"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Dasgupta, Modhumita Ghosh"],["dc.contributor.author","Dharanishanthi, Veeramuthu"],["dc.contributor.author","Agarwal, Ishangi"],["dc.contributor.author","Krutovsky, Konstantin V."],["dc.date.accessioned","2018-11-07T10:02:05Z"],["dc.date.available","2018-11-07T10:02:05Z"],["dc.date.issued","2015"],["dc.description.abstract","The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family-based QTL and association analysis in Eucalyptus."],["dc.identifier.doi","10.1371/journal.pone.0116528"],["dc.identifier.isi","000348203500028"],["dc.identifier.pmid","25602379"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11601"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38159"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights.access","openAccess"],["dc.title","Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 1989Journal Article Research Paper
    [["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Genetika"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Altukhov, Y. P."],["dc.contributor.author","Krutovskii, K. V."],["dc.contributor.author","Politov, D. V."],["dc.creator.author","ALTUKHOV, YP"],["dc.creator.author","KRUTOVSKII, KV"],["dc.creator.author","POLITOV, DV"],["dc.date.accessioned","2022-08-18T12:04:12Z"],["dc.date.available","2022-08-18T12:04:12Z"],["dc.date.issued","1989"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112845"],["dc.title","Genetic-Variability in Siberian Stone Pine, Pinus Sibirica Du Tour .3. Linkage Relationships Among Isozyme Loci"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details