Now showing 1 - 9 of 9
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1483"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","1493"],["dc.bibliographiccitation.volume","593"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Leidel, Sebastian A."],["dc.date.accessioned","2021-06-01T10:49:02Z"],["dc.date.available","2021-06-01T10:49:02Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/1873-3468.13491"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86141"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1873-3468"],["dc.relation.issn","0014-5793"],["dc.title","The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Zhang, Ying"],["dc.contributor.author","De Laurentiis, Evelina"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Wahlig, Mascha"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Gruseck, Simon"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Wölfle, Tina"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rospert, Sabine"],["dc.date.accessioned","2021-04-14T08:28:39Z"],["dc.date.available","2021-04-14T08:28:39Z"],["dc.date.issued","2021"],["dc.description.abstract","The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit."],["dc.identifier.doi","10.1038/s41467-021-20981-3"],["dc.identifier.pmid","33542241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82670"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/220"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/139"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","CC BY 4.0"],["dc.title","Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","12289"],["dc.bibliographiccitation.issue","30"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","12294"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Rezgui, Vanessa Anissa Nathalie"],["dc.contributor.author","Tyagi, Kshitiz"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Konevega, Andrey L."],["dc.contributor.author","Mittelstaet, Joerg"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Peter, Matthias"],["dc.contributor.author","Pedrioli, Patrick G. A."],["dc.date.accessioned","2018-01-26T08:29:14Z"],["dc.date.available","2018-01-26T08:29:14Z"],["dc.date.issued","2013"],["dc.description.abstract","tRNA modifications are crucial to ensure translation efficiency and fidelity. In eukaryotes, the URM1 and ELP pathways increase cellular resistance to various stress conditions, such as nutrient starvation and oxidative agents, by promoting thiolation and methoxycarbonylmethylation, respectively, of the wobble uridine of cytoplasmic (tK(UUU)), (tQ(UUG)), and (tE(UUC)). Although in vitro experiments have implicated these tRNA modifications in modulating wobbling capacity and translation efficiency, their exact in vivo biological roles remain largely unexplored. Using a combination of quantitative proteomics and codon-specific translation reporters, we find that translation of a specific gene subset enriched for AAA, CAA, and GAA codons is impaired in the absence of URM1- and ELP-dependent tRNA modifications. Moreover, in vitro experiments using native tRNAs demonstrate that both modifications enhance binding of tK(UUU) to the ribosomal A-site. Taken together, our data suggest that tRNA thiolation and methoxycarbonylmethylation regulate translation of genes with specific codon content."],["dc.identifier.doi","10.1073/pnas.1300781110"],["dc.identifier.pmid","23836657"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11843"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1091-6490"],["dc.title","tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","5857"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","5864"],["dc.bibliographiccitation.volume","139"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Rodnina, Marina V."],["dc.date.accessioned","2018-01-17T12:57:35Z"],["dc.date.available","2018-01-17T12:57:35Z"],["dc.date.issued","2017"],["dc.description.abstract","Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell."],["dc.identifier.doi","10.1021/jacs.7b00727"],["dc.identifier.pmid","28368583"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11696"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1520-5126"],["dc.title","Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","e1143076"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Translation"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Rodnina, Marina"],["dc.date.accessioned","2017-09-07T11:54:04Z"],["dc.date.available","2017-09-07T11:54:04Z"],["dc.date.issued","2016"],["dc.description.abstract","tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress."],["dc.format.extent","1-12"],["dc.identifier.doi","10.1080/21690731.2016.1143076"],["dc.identifier.gro","3145097"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2796"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","2169-0731"],["dc.title","tRNA wobble modifications and protein homeostasis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Book Chapter
    [["dc.bibliographiccitation.firstpage","259"],["dc.bibliographiccitation.lastpage","280"],["dc.bibliographiccitation.seriesnr","2533"],["dc.contributor.author","Blanchet, Sandra"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.editor","Entian, Karl-Dieter"],["dc.date.accessioned","2022-09-01T09:51:02Z"],["dc.date.available","2022-09-01T09:51:02Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1007/978-1-0716-2501-9_16"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113864"],["dc.notes.intern","DOI-Import GROB-597"],["dc.publisher","Springer US"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Methods in Molecular Biology"],["dc.relation.eisbn","978-1-0716-2501-9"],["dc.relation.isbn","978-1-0716-2500-2"],["dc.relation.ispartof","Ribosome Biogenesis : Methods and Protocols"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","In Vitro Assembly of a Fully Reconstituted Yeast Translation System for Studies of Initiation and Elongation Phases of Protein Synthesis"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2104"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","2119"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Warda, Ahmed S."],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Blessing, Charlotte"],["dc.contributor.author","Hübner, Benedikt"],["dc.contributor.author","Seikowski, Jan"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial gene expression uses a non-universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt-)tRNA(Met) mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt-tRNA(Met) to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m(5)C34 of mt-tRNA(Met) to generate an f(5)C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m(5)C34 mt-tRNA(Met) in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt-tRNA(Met) function. Together, our data reveal how modifications in mt-tRNA(Met) are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNA(Met) to recognise the different codons encoding methionine."],["dc.identifier.doi","10.15252/embj.201694885"],["dc.identifier.gro","3141604"],["dc.identifier.isi","000385707500006"],["dc.identifier.pmid","27497299"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13845"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/235"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/5"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","NSUN3 and ABH1 modify the wobble position of mt-tRNA(Met) to expand codon recognition in mitochondrial translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Book Chapter
    [["dc.bibliographiccitation.firstpage","217"],["dc.bibliographiccitation.lastpage","228"],["dc.bibliographiccitation.seriesnr","2533"],["dc.contributor.author","Blanchet, Sandra"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.editor","Entian, Karl-Dieter"],["dc.date.accessioned","2022-09-01T09:51:00Z"],["dc.date.available","2022-09-01T09:51:00Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1007/978-1-0716-2501-9_13"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113853"],["dc.notes.intern","DOI-Import GROB-597"],["dc.publisher","Springer US"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Methods in Molecular Biology"],["dc.relation.eisbn","978-1-0716-2501-9"],["dc.relation.isbn","978-1-0716-2500-2"],["dc.relation.ispartof","Ribosome Biogenesis : Methods and Protocols"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Translation Phases in Eukaryotes"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Pochopien, Agnieszka A"],["dc.contributor.author","Chih‐Chien Wu, Colin"],["dc.contributor.author","Beckert, Bertrand"],["dc.contributor.author","Blanchet, Sandra"],["dc.contributor.author","Green, Rachel"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Wilson, Daniel N"],["dc.date.accessioned","2022-03-01T11:44:18Z"],["dc.date.available","2022-03-01T11:44:18Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.15252/embj.2020106449"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/102987"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI