Now showing 1 - 10 of 32
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","12404"],["dc.bibliographiccitation.issue","82"],["dc.bibliographiccitation.journal","Chemical Communications"],["dc.bibliographiccitation.lastpage","12407"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Munari, Francesca"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Assfalg, Michael"],["dc.contributor.author","Griesinger, Christian"],["dc.date.accessioned","2020-12-10T18:11:26Z"],["dc.date.available","2020-12-10T18:11:26Z"],["dc.date.issued","2019"],["dc.description.abstract","This NMR probe of water dynamics enables viscosity determination in concentrated and crowded solutions and allows quantifying internal fluidity within biological condensates."],["dc.description.abstract","We present an NMR method based on natural abundance 17 O relaxation of water to determine effective viscosity in biological aqueous samples. The method accurately captures viscosity of dilute and crowded protein solutions and offers a fairly simple way to quantify the internal fluidity of biological condensates formed through phase separation."],["dc.description.abstract","This NMR probe of water dynamics enables viscosity determination in concentrated and crowded solutions and allows quantifying internal fluidity within biological condensates."],["dc.description.abstract","We present an NMR method based on natural abundance 17 O relaxation of water to determine effective viscosity in biological aqueous samples. The method accurately captures viscosity of dilute and crowded protein solutions and offers a fairly simple way to quantify the internal fluidity of biological condensates formed through phase separation."],["dc.identifier.doi","10.1039/C9CC06124J"],["dc.identifier.eissn","1364-548X"],["dc.identifier.issn","1359-7345"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16666"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74010"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1364-548X"],["dc.relation.issn","1359-7345"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","A facile oxygen-17 NMR method to determine effective viscosity in dilute, molecularly crowded and confined aqueous media"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","8685"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Chemistry - A European Journal"],["dc.bibliographiccitation.lastpage","8693"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Beyer, Isaak"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Klafki, Hans-Wolfgang"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Haußmann, Ute"],["dc.contributor.author","Wiltfang, Jens"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Knölker, Hans-Joachim"],["dc.date.accessioned","2017-09-07T11:44:41Z"],["dc.date.available","2017-09-07T11:44:41Z"],["dc.date.issued","2016"],["dc.description.abstract","In addition to the prototypic amyloid-β (Aβ) peptides Aβ1–40 and Aβ1–42, several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ−3–38, Aβ−3–40, and Aβ−3–42. Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ−3–38 and Aβ−3–40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(−3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease."],["dc.identifier.doi","10.1002/chem.201600892"],["dc.identifier.gro","3151723"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14030"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8544"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","0947-6539"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ−3-x-Peptides"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","930"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","ChemBioChem"],["dc.bibliographiccitation.lastpage","950"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Blackledge, Martin"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2021-06-01T10:49:44Z"],["dc.date.available","2021-06-01T10:49:44Z"],["dc.date.issued","2012"],["dc.identifier.doi","10.1002/cbic.201200093"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86393"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.issn","1439-4227"],["dc.title","Intrinsically Disordered Proteins: From Sequence and Conformational Properties toward Drug Discovery"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","4913"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","4919"],["dc.bibliographiccitation.volume","136"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Amininasab, Mehriar"],["dc.contributor.author","Giller, Karin"],["dc.contributor.author","Kumar, Sathish"],["dc.contributor.author","Stuendl, Anne"],["dc.contributor.author","Schneider, Anja"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Walter, Jochen"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2018-11-07T09:41:25Z"],["dc.date.available","2018-11-07T09:41:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Pathogenesis of Alzheimer's disease (AD) is associated with aggregation of the amyloid-beta (A beta) peptide into oligomeric and fibrillar assemblies; however, little is known about the molecular basis of aggregation of A beta into distinct assembly states. Here we demonstrate that phosphorylation at serine 26 (S26) impairs A beta fibrillization while stabilizing its monomers and nontoxic soluble assemblies of nonfibrillar morphology. NMR spectroscopy and replica-exchange molecular dynamics indicate that introduction of a phosphate group or phosphomimetic at position 26 diminishes A beta's propensity to form a beta-hairpin, rigidifies the region around the modification site, and interferes with formation of a fibril-specific salt bridge between aspartic acid 23 and lysine 28. The combined data demonstrate that phosphorylation of S26 prevents a distinct conformational rearrangement that is required for progression of A beta aggregation toward fibrils and provide a basis for a possible role of phosphorylation at serine 26 in AD."],["dc.description.sponsorship","DFG [ZW 71/2-2, ZW 71/3-2, WA1477/6-2]"],["dc.identifier.doi","10.1021/ja411707y"],["dc.identifier.isi","000333947900030"],["dc.identifier.pmid","24617810"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33723"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Chemical Soc"],["dc.relation.issn","0002-7863"],["dc.title","Turn Plasticity Distinguishes Different Modes of Amyloid-beta Aggregation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Conference Abstract
    [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Experimental Dermatology"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Buhl, Timo"],["dc.contributor.author","Braun, Alexander"],["dc.contributor.author","Forkel, Susann"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","van Werven, Lars"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Mempel, Martin"],["dc.contributor.author","Schoen, Michael Peter"],["dc.contributor.author","Haenssle, Holger Andreas"],["dc.date.accessioned","2018-11-07T09:43:01Z"],["dc.date.available","2018-11-07T09:43:01Z"],["dc.date.issued","2014"],["dc.format.extent","E32"],["dc.identifier.isi","000332335500205"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34085"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Cologne, GERMANY"],["dc.relation.issn","1600-0625"],["dc.relation.issn","0906-6705"],["dc.title","Routes of internalization for Melan-A/TAT fusion peptides differ considerably between human dendritic cells and other non-phagocytic cell types"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","15262"],["dc.bibliographiccitation.issue","46"],["dc.bibliographiccitation.journal","Angewandte Chemie. International Edition"],["dc.bibliographiccitation.lastpage","15266"],["dc.bibliographiccitation.volume","57"],["dc.contributor.author","Rezaei‐Ghaleh, Nasrollah"],["dc.contributor.author","Parigi, Giacomo"],["dc.contributor.author","Soranno, Andrea"],["dc.contributor.author","Holla, Andrea"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Schuler, Benjamin"],["dc.contributor.author","Luchinat, Claudio"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2020-12-10T14:05:34Z"],["dc.date.available","2020-12-10T14:05:34Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/anie.201808172"],["dc.identifier.eissn","1521-3773"],["dc.identifier.issn","1433-7851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69576"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Local and Global Dynamics in Intrinsically Disordered Synuclein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","9933"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","9939"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Vemulapalli, Sahithya Phani Babu"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Griesinger, Christian"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.date.accessioned","2021-12-01T09:20:45Z"],["dc.date.available","2021-12-01T09:20:45Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1021/acs.jpclett.1c02595"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94265"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","1948-7185"],["dc.relation.issn","1948-7185"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019-07-02Journal Article
    [["dc.bibliographiccitation.artnumber","2909"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Ukmar-Godec, Tina"],["dc.contributor.author","Hutten, Saskia"],["dc.contributor.author","Grieshop, Matthew P."],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Cima-Omori, Maria-Sol"],["dc.contributor.author","Biernat, Jacek"],["dc.contributor.author","Mandelkow, Eckhard"],["dc.contributor.author","Söding, Johannes"],["dc.contributor.author","Dormann, Dorothee"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2019-07-22T12:49:00Z"],["dc.date.available","2019-07-22T12:49:00Z"],["dc.date.issued","2019-07-02"],["dc.description.abstract","Cells form and use biomolecular condensates to execute biochemical reactions. The molecular properties of non-membrane-bound condensates are directly connected to the amino acid content of disordered protein regions. Lysine plays an important role in cellular function, but little is known about its role in biomolecular condensation. Here we show that protein disorder is abundant in protein/RNA granules and lysine is enriched in disordered regions of proteins in P-bodies compared to the entire human disordered proteome. Lysine-rich polypeptides phase separate into lysine/RNA-coacervates that are more dynamic and differ at the molecular level from arginine/RNA-coacervates. Consistent with the ability of lysine to drive phase separation, lysine-rich variants of the Alzheimer's disease-linked protein tau undergo coacervation with RNA in vitro and bind to stress granules in cells. Acetylation of lysine reverses liquid-liquid phase separation and reduces colocalization of tau with stress granules. Our study establishes lysine as an important regulator of cellular condensation."],["dc.identifier.doi","10.1038/s41467-019-10792-y"],["dc.identifier.pmid","31266957"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16293"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61798"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","2041-1723"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Lysine/RNA-interactions drive and regulate biomolecular condensation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","no"],["dc.bibliographiccitation.issue","29"],["dc.bibliographiccitation.journal","ChemInform"],["dc.bibliographiccitation.lastpage","no"],["dc.bibliographiccitation.volume","43"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Blackledge, Martin"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2021-12-08T12:30:02Z"],["dc.date.available","2021-12-08T12:30:02Z"],["dc.date.issued","2012"],["dc.identifier.doi","10.1002/chin.201229271"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/96301"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-476"],["dc.relation.issn","0931-7597"],["dc.rights.uri","http://doi.wiley.com/10.1002/tdm_license_1.1"],["dc.title","ChemInform Abstract: Intrinsically Disordered Proteins: From Sequence and Conformational Toward Drug Discovery"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.artnumber","cphc.202100542"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.contributor.author","Mamone, Salvatore"],["dc.contributor.author","Glöggler, Stefan"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Rezaei‐Ghaleh, Nasrollah"],["dc.date.accessioned","2021-09-01T06:42:49Z"],["dc.date.available","2021-09-01T06:42:49Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1002/cphc.202100542"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89150"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.title","Early Divergence in Misfolding Pathways of Amyloid‐Beta Peptides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI