Now showing 1 - 8 of 8
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","42"],["dc.bibliographiccitation.journal","Geoderma"],["dc.bibliographiccitation.lastpage","50"],["dc.bibliographiccitation.volume","284"],["dc.contributor.author","Allen, Kara"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Utami, Sri Rahayu"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2017-09-07T11:43:32Z"],["dc.date.available","2017-09-07T11:43:32Z"],["dc.date.issued","2016"],["dc.description.abstract","Forest conversion to agriculture can decrease soil nutrient stocks overtime. However, inherent spatial variability in soil biochemical properties in converted landscapes could be high, and may supersede effects of land-use change on soil nutrient changes. Our aims were to assess changes in soil nutrient stocks with land-use change, and to quantify the proportions of spatial variability and land-use change effects on the overall variance of soil nutrient stocks. This study was conducted in Jambi Province, Sumatra, Indonesia in two distinct landscapes defined by the dominant soil texture and type: loam and clay Acrisol soils. In each landscape, four land-use types were examined: lowland forest and rubber interspersed in naturally regenerating forest (referred here as “jungle rubber”) as reference land uses and smallholder plantations of rubber and oil palm. In the 0–0.5 m soil depth of the reference land uses, the clay Acrisol had higher total N (660.1 ± 63.8–1074.2 ± 158.8 g N m− 2; P ≤ 0.05), exchangeable Ca (24.1 ± 5.7–80.6 ± 22.8 g Ca m− 2; P ≤ 0.06), Mg (4.3 ± 0.6–39.2 ± 16.3 g Mg m− 2; P ≤ 0.02), K (11.7 ± 0.7–34.7 ± 12.1 g K m− 2; P ≤ 0.06), extractable P (1.1 ± 0.1–2.6 ± 0.1 g P m− 2; P ≤ 0.001) and effective cation exchange capacity (ECEC; 11.4 ± 3.1–40.6 ± 11.0 cmolc kg− 1; P = 0.02), illustrating that clay content influenced soil fertility in these highly weathered soils. Compared to the reference land uses, the oil palm plantations had higher soil pH (4.2 ± 0.0–4.6 ± 0.1; P ≤ 0.04), base saturation (8.9 ± 1.6–6.5 ± 1.3%; P ≤ 0.07) and extractable P (0.8 ± 0.1–6.1 ± 3.2 g P m− 2; P ≤ 0.01) in the top 0.5 m depth, which was probably due to the legacy effect of biomass burning and fertilization. We were unable to detect significant effects of land-use change on other soil biochemical characteristics (i.e., ECEC, stocks of exchangeable bases, soil organic carbon (SOC), total N). Based on variance components analysis, a large proportion of the variance of these parameters was accounted by the variation among replicate plots (26–91%) rather than by land-use types (only 0–6%). Power analysis showed that the optimum number of replicate plots to detect land-use change effects on these parameters ranged from 5 to 7. Our results suggest that spatial variability must be represented in the experimental design in order to detect land-use change effects on soil nutrient changes through stratifying the area of inference (i.e., landscape or region) based on known drivers of soil fertility and determining the optimal number of experimental units."],["dc.identifier.doi","10.1016/j.geoderma.2016.08.010"],["dc.identifier.gro","3150168"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6903"],["dc.language.iso","en"],["dc.notes.status","public"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation.issn","0016-7061"],["dc.subject","Soil nutrient stocks; Lowland forest; Rubber; Oil palm; Land-use change"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","AGRIVITA"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Utami, Sri Rahayu"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2020-12-10T18:42:48Z"],["dc.date.available","2020-12-10T18:42:48Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.17503/agrivita.v40i2.1723"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78089"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Soil Biochemical Properties and Nutrient Leaching from Smallholder Oil Palm Plantations, Sumatra-Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","5131"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Biogeosciences"],["dc.bibliographiccitation.lastpage","5154"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Matson, Amanda L."],["dc.contributor.author","Schulte-Bisping, Hubert"],["dc.contributor.author","Utami, Sri Rahayu"],["dc.contributor.author","van Straaten, Oliver"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2019-07-09T11:45:54Z"],["dc.date.available","2019-07-09T11:45:54Z"],["dc.date.issued","2018"],["dc.description.abstract","Conversion of forest to rubber and oil palm plantations is widespread in Sumatra, Indonesia, and it is largely unknown how such land-use conversion affects nutrient leaching losses. Our study aimed to quantify nutrient leaching and nutrient retention efficiency in the soil after land-use conversion to smallholder rubber and oil palm plantations. In Jambi province, Indonesia, we selected two landscapes on highly weathered Acrisol soils that mainly differed in texture: loam and clay. Within each soil type, we compared two reference land uses, lowland forest and jungle rubber (defined as rubber trees interspersed in secondary forest), with two converted land uses: smallholder rubber and oil palm plantations. Within each soil type, the first three land uses were represented by 4 replicate sites and the oil palm by three sites, totaling 30 sites. We measured leaching losses using suction cup lysimeters sampled biweekly to monthly from February to December 2013. Forests and jungle rubber had low solute concentrations in drainage water, suggesting low internal inputs of rock-derived nutrients and efficient internal cycling of nutrients. These reference land uses on the clay Acrisol soils had lower leaching of dissolved N and base cations (P D0.01–0.06) and higher N and base cation retention efficiency (P < 0.01–0.07) than those on the loam Acrisols. In the converted land uses, particularly on the loam Acrisol, the fertilized area of oil palm plantations showed higher leaching of dissolved N, organic C, and base cations (P < 0.01–0.08) and lower N and base cation retention efficiency compared to all the other land uses (P < 0.01–0.06). The unfertilized rubber plantations, particularly on the loam Acrisol, showed lower leaching of dissolved P (P D 0:08) and organic C (P < 0.01) compared to forest or jungle rubber, reflecting decreases in soil P stocks and C inputs to the soil. Our results suggest that land-use conversion to rubber and oil palm causes disruption of initially efficient nutrient cycling, which decreases nutrient availability. Over time, smallholders will likely be increasingly reliant on fertilization, with the risk of diminishing water quality due to increased nutrient leaching. Thus, there is a need to develop management practices to minimize leaching while sustaining productivity."],["dc.identifier.doi","10.5194/bg-15-5131-2018"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15340"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59333"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation.issn","1726-4189"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1511"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Nature Ecology & Evolution"],["dc.bibliographiccitation.lastpage","1519"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Allen, Kara"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Clough, Yann"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Darras, Kevin"],["dc.contributor.author","Denmead, Lisa H."],["dc.contributor.author","Farikhah Haneda, Noor"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Edho Prabowo, Walesa"],["dc.contributor.author","Schneider, Dominik"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Brose, Ulrich"],["dc.date.accessioned","2018-03-13T14:12:09Z"],["dc.date.available","2018-03-13T14:12:09Z"],["dc.date.issued","2017"],["dc.description.abstract","The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds. Tropical land use resulted in increases in biomass and species richness via bottom-up cascading effects, but reductions via direct effects. When considering direct and cascading effects together, land use was found to reduce biomass and species richness, with increasing magnitude at higher trophic levels. Our analyses disentangle the multifaceted effects of land-use change on tropical ecosystems, revealing that biotic interactions on broad taxonomic scales influence the ecological outcome of anthropogenic perturbations to natural ecosystems."],["dc.identifier.doi","10.1038/s41559-017-0275-7"],["dc.identifier.pmid","29185508"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13011"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation.eissn","2397-334X"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Soil Biology and Biochemistry"],["dc.bibliographiccitation.lastpage","6"],["dc.bibliographiccitation.volume","122"],["dc.contributor.author","Allen, Kara"],["dc.contributor.author","Hassler, Evelyn"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Corre, Marife D."],["dc.date.accessioned","2020-12-10T15:21:21Z"],["dc.date.available","2020-12-10T15:21:21Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.soilbio.2018.03.016"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73000"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Canopy soil of oil palm plantations emits methane and nitrous oxide"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","13137"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","12"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Clough, Yann"],["dc.contributor.author","Krishna, Vijesh V."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Darras, Kevin"],["dc.contributor.author","Denmead, Lisa H."],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Moser, Stefan"],["dc.contributor.author","Mußhoff, Oliver"],["dc.contributor.author","Steinebach, Stefanie"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Allen, Kara"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Breidenbach, Natalie"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Finkeldey, Reiner"],["dc.contributor.author","Harahap, Idham"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Holtkamp, A. Mareike"],["dc.contributor.author","Hörandl, Elvira"],["dc.contributor.author","Irawan, Bambang"],["dc.contributor.author","Jaya, I. Nengah Surati"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Melati, Dian Nuraini"],["dc.contributor.author","Opfermann, Nicole"],["dc.contributor.author","Pérez-Cruzado, César"],["dc.contributor.author","Prabowo, Walesa Edho"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Rizali, Akhmad"],["dc.contributor.author","Rubiana, Ratna"],["dc.contributor.author","Schneider, Dominik"],["dc.contributor.author","Tjitrosoedirdjo, Sri Sudarmiyati"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2017-09-07T11:45:50Z"],["dc.date.available","2017-09-07T11:45:50Z"],["dc.date.issued","2016"],["dc.description.abstract","Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1038/ncomms13137"],["dc.identifier.fs","625489"],["dc.identifier.gro","3149120"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13958"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5770"],["dc.language.iso","en"],["dc.notes.intern","Kreft Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B03: Plant genetic diversity in tropical lowland rainforest transformation systems"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation","SFB 990 | B | B05: Land use patterns in Jambi - quantification of structure, heterogeneity and changes of vegetation and land use as a basis for the explanation of ecological and socioeconomic functions"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation","SFB 990 | B | B12: Reproductive strategies of weedy flowering plants in tropical rainforest transformation systems"],["dc.relation","SFB 990 | B | B13: Impact of management intensity and tree enrichment of oil palm plantations on below- and aboveground invertebrates in Sumatra (Indonesia)"],["dc.relation","SFB 990 | C | C01: Produktivität, Marktzugang und internationale Anbindung von kleinbäuerlicher Kautschuk- und Palmölerzeugung in der Provinz Jambi"],["dc.relation","SFB 990 | C | C03: Culture-Specific Human Interaction with Tropical Lowland Rainforests in Transformation in Jambi, Sumatra"],["dc.relation","SFB 990 | C | C06: Zum Verständnis des Zertifizierungs- und Wiederanpflanzungsverhaltens indonesischer Kleinbauern"],["dc.relation","SFB 990 | C | C07: Einflussfaktoren von Landnutzungswandel und sozioökonomische Auswirkungen für ländliche Haushalte"],["dc.relation.issn","2041-1723"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2781"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Biogeosciences"],["dc.bibliographiccitation.lastpage","2798"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Hassler, Evelyn"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2017-09-07T11:54:57Z"],["dc.date.available","2017-09-07T11:54:57Z"],["dc.date.issued","2017"],["dc.description.abstract","Oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil–atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but were both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forests, rubber trees interspersed in secondary forest (termed as jungle rubber), both as reference land uses and smallholder rubber and oil palm plantations as converted land uses. In the loam Acrisol landscape, we conducted a follow-on study in a large-scale oil palm plantation (called PTPN VI) for comparison of soil N2O fluxes with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0. 58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Soil N2O fluxes from the large-scale oil palm plantation did not differ with those from smallholder plantations (P = 0. 15). Over 1-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m−2 h−1) were 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm) and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m−2 h−1) were −0.6 ± 0.7 to 5.7 ± 5.8 (reference land uses), −1.2 ± 0.5 to −1.0 ± 0.2 (rubber) and −0.2 ± 1.2 to 0.7 ± 0.7 (smallholder oil palm). To improve the estimate of soil N-oxide fluxes from oil palm plantations in this region, studies should focus on large-scale plantations (which usually have 2 to 4 times higher N fertilization rates than smallholders) with frequent measurements following fertilizer application."],["dc.description.sponsorship","Open-Access-Publikatinsfonds 2017"],["dc.identifier.doi","10.5194/bg-14-2781-2017"],["dc.identifier.gro","3150160"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14586"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6893"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation.issn","1726-4189"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","1339"],["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Schneider, Dominik"],["dc.contributor.author","Engelhaupt, Martin"],["dc.contributor.author","Allen, Kara"],["dc.contributor.author","Kurniawan, Syahrul"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Heinemann, Melanie"],["dc.contributor.author","Nacke, Heiko"],["dc.contributor.author","Wijayanti, Marini"],["dc.contributor.author","Meryandini, Anja"],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Daniel, Rolf"],["dc.date.accessioned","2018-11-07T09:47:36Z"],["dc.date.available","2018-11-07T09:47:36Z"],["dc.date.issued","2015"],["dc.description.abstract","Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaurnarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio, and extractable P content. Archaeal community composition and diversity were correlated to pH value, exchangeable Fe content, water content, and total N. The distribution of bacterial and archaeal taxa involved in biological N cycle indicated functional shifts of the cycle during conversion of rainforest to plantations."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.3389/fmicb.2015.01339"],["dc.identifier.isi","000366700900001"],["dc.identifier.pmid","26696965"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35147"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1664-302X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS