Options
Stark, Holger
Loading...
Preferred name
Stark, Holger
Official Name
Stark, Holger
Alternative Name
Stark, H.
Main Affiliation
Now showing 1 - 10 of 289
2018Journal Article [["dc.bibliographiccitation.firstpage","278"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","BIOspektrum"],["dc.bibliographiccitation.lastpage","282"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Stützer, Alexandra"],["dc.contributor.author","Bertram, Karl"],["dc.contributor.author","Kastner, Berthold"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Urlaub, Henning"],["dc.date.accessioned","2018-11-15T12:52:38Z"],["dc.date.accessioned","2021-10-27T13:12:42Z"],["dc.date.available","2018-11-15T12:52:38Z"],["dc.date.available","2021-10-27T13:12:42Z"],["dc.date.issued","2018"],["dc.description.abstract","Cryo-electron microscopy (cryo-EM) can solve structures of highly dynamic macromolecular complexes. To characterize less well defined regions in cryo-EM images, cross-linking coupled with mass spectrometry (CX-MS) provides valuable information on the arrangement of domains and amino acids. CX-MS involves covalent linkage of protein residues close to each other and identifying these connections by mass spectrometry. Here, we summarise the advances of CX-MS and its integration with cryo-EM for structural reconstruction."],["dc.identifier.doi","10.1007/s12268-018-0909-6"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15570"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91715"],["dc.language.iso","de"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.issn","1868-6249"],["dc.relation.issn","0947-0867"],["dc.relation.orgunit","Fakultät für Chemie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Protein-Cross-Linking zur Aufklärung von komplexen Strukturen"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","594"],["dc.bibliographiccitation.issue","6299"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","598"],["dc.bibliographiccitation.volume","353"],["dc.contributor.author","Schrader, Jil"],["dc.contributor.author","Henneberg, Fabian"],["dc.contributor.author","Mata, Ricardo A."],["dc.contributor.author","Tittmann, Kai"],["dc.contributor.author","Schneider, Thomas R."],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Bourenkov, Gleb P."],["dc.contributor.author","Chari, Ashwin"],["dc.date.accessioned","2018-11-07T10:10:17Z"],["dc.date.available","2018-11-07T10:10:17Z"],["dc.date.issued","2016"],["dc.description.abstract","The proteasome is a validated target for anticancer therapy, and proteasome inhibition is employed in the clinic for the treatment of tumors and hematological malignancies. Here, we describe crystal structures of the native human 20S proteasome and its complexes with inhibitors, which either are drugs approved for cancer treatment or are in clinical trials. The structure of the native human 20S proteasome was determined at an unprecedented resolution of 1.8 angstroms. Additionally, six inhibitor-proteasome complex structures were elucidated at resolutions between 1.9 and 2.1 angstroms. Collectively, the high-resolution structures provide new insights into the catalytic mechanisms of inhibition and necessitate a revised description of the proteasome active site. Knowledge about inhibition mechanisms provides insights into peptide hydrolysis and can guide strategies for the development of next-generation proteasome-based cancer therapeutics."],["dc.identifier.doi","10.1126/science.aaf8993"],["dc.identifier.eissn","1095-9203"],["dc.identifier.isi","000381560900043"],["dc.identifier.issn","0036-8075"],["dc.identifier.pmid","27493187"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39823"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.eissn","0036-8075"],["dc.relation.issn","1095-9203"],["dc.title","The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article [["dc.bibliographiccitation.firstpage","258a"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Vaiana, Andrea C."],["dc.contributor.author","Bock, Lars V."],["dc.contributor.author","Blau, Christian"],["dc.contributor.author","Schroeder, Gunnar F."],["dc.contributor.author","Fischer, Niels"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Rodnina, Marina"],["dc.contributor.author","Grubmüller, Helmut"],["dc.date.accessioned","2022-03-01T11:44:56Z"],["dc.date.available","2022-03-01T11:44:56Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1016/j.bpj.2012.11.1447"],["dc.identifier.pii","S0006349512026938"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103165"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Modulation of Intersubunit Interactions during tRNA Translocation through the Ribosome"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2004Journal Article [["dc.bibliographiccitation.firstpage","435"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Molecular Biology"],["dc.bibliographiccitation.lastpage","442"],["dc.bibliographiccitation.volume","344"],["dc.contributor.author","Tichelaar, Willem"],["dc.contributor.author","Safferling, Markus"],["dc.contributor.author","Keinänen, Kari"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Madden, Dean R."],["dc.date.accessioned","2021-03-05T08:58:07Z"],["dc.date.available","2021-03-05T08:58:07Z"],["dc.date.issued","2004"],["dc.identifier.doi","10.1016/j.jmb.2004.09.048"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80013"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.issn","0022-2836"],["dc.title","The Three-dimensional Structure of an Ionotropic Glutamate Receptor Reveals a Dimer-of-dimers Assembly"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","+"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Buschhorn, Bettina A."],["dc.contributor.author","Petzold, Georg"],["dc.contributor.author","Galova, Marta"],["dc.contributor.author","Dube, Prakash"],["dc.contributor.author","Kraft, Claudine"],["dc.contributor.author","Herzog, Franz"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Peters, Jan-Michael"],["dc.date.accessioned","2018-11-07T09:01:46Z"],["dc.date.available","2018-11-07T09:01:46Z"],["dc.date.issued","2011"],["dc.description.abstract","The anaphase-promoting complex/cyclosome (APC/C) is a 22S ubiquitin ligase complex that initiates chromosome segregation and mitotic exit. We have used biochemical and electron microscopic analyses of Saccharomyces cerevisiae and human APC/C to address how the APC/C subunit Doc1 contributes to recruitment and processive ubiquitylation of APC/C substrates, and to understand how APC/C monomers interact to form a 36S dimeric form. We show that Doc1 interacts with Cdc27, Cdc16 and Apc1 and is located in the vicinity of the cullin-RING module Apc2-Apc11 in the inner cavity of the APC/C. Substrate proteins also bind in the inner cavity, in close proximity to Doc1 and the coactivator Cdh1, and induce conformational changes in Apc2-Apc11. Our results suggest that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of a coactivator protein and Doc1."],["dc.identifier.doi","10.1038/nsmb.1979"],["dc.identifier.isi","000285966800002"],["dc.identifier.pmid","21186364"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24510"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","1545-9985"],["dc.title","Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","960"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","965"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Monecke, Thomas"],["dc.contributor.author","Haselbach, David"],["dc.contributor.author","Voss, Bela"],["dc.contributor.author","Russek, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Thomson, Emma"],["dc.contributor.author","Hurt, Ed"],["dc.contributor.author","Zachariae, Ulrich"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Dickmanns, Achim"],["dc.contributor.author","Ficner, Ralf"],["dc.date.accessioned","2017-09-07T11:48:18Z"],["dc.date.available","2017-09-07T11:48:18Z"],["dc.date.issued","2013"],["dc.description.abstract","In eukaryotes, the nucleocytoplasmic transport of macromolecules is mainly mediated by soluble nuclear transport receptors of the karyopherin-beta superfamily termed importins and exportins. The highly versatile exportin chromosome region maintenance 1 (CRM1) is essential for nuclear depletion of numerous structurally and functionally unrelated protein and ribonucleoprotein cargoes. CRM1 has been shown to adopt a toroidal structure in several functional transport complexes and was thought to maintain this conformation throughout the entire nucleocytoplasmic transport cycle. We solved crystal structures of free CRM1 from the thermophilic eukaryote Chaetomium thermophilum. Surprisingly, unbound CRM1 exhibits an overall extended and pitched superhelical conformation. The two regulatory regions, namely the acidic loop and the C-terminal a-helix, are dramatically repositioned in free CRM1 in comparison with the ternary CRM1-Ran-Snurportin1 export complex. Single-particle EM analysis demonstrates that, in a noncrystalline environment, free CRM1 exists in equilibrium between extended, superhelical and compact, ring-like conformations. Molecular dynamics simulations show that the C-terminal helix plays an important role in regulating the transition from an extended to a compact conformation and reveal how the binding site for nuclear export signals of cargoes is modulated by different CRM1 conformations. Combining these results, we propose a model for the cooperativity of CRM1 export complex assembly involving the long-range allosteric communication between the distant binding sites of GTP-bound Ran and cargo."],["dc.identifier.doi","10.1073/pnas.1215214110"],["dc.identifier.gro","3142406"],["dc.identifier.isi","000313909100042"],["dc.identifier.pmid","23277578"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7930"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0027-8424"],["dc.title","Structural basis for cooperativity of CRM1 export complex formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Journal Article [["dc.bibliographiccitation.firstpage","267"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Cell"],["dc.bibliographiccitation.lastpage","278"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Sander, Bjoern"],["dc.contributor.author","Golas, Monika M."],["dc.contributor.author","Makarov, Evgeny M."],["dc.contributor.author","Brahms, Hero"],["dc.contributor.author","Kastner, Berthold"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2021-03-05T08:58:09Z"],["dc.date.available","2021-03-05T08:58:09Z"],["dc.date.issued","2006"],["dc.identifier.doi","10.1016/j.molcel.2006.08.021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80026"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.issn","1097-2765"],["dc.title","Organization of Core Spliceosomal Components U5 snRNA Loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as Revealed by Electron Cryomicroscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","1124"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Structure"],["dc.bibliographiccitation.lastpage","1136.e4"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Prajapati, Sabin"],["dc.contributor.author","Haselbach, David"],["dc.contributor.author","Wittig, Sabine"],["dc.contributor.author","Patel, Mulchand S."],["dc.contributor.author","Chari, Ashwin"],["dc.contributor.author","Schmidt, Carla"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Tittmann, Kai"],["dc.date.accessioned","2020-12-10T15:21:32Z"],["dc.date.available","2020-12-10T15:21:32Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.str.2019.04.009"],["dc.identifier.issn","0969-2126"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73054"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Structural and Functional Analyses of the Human PDH Complex Suggest a “Division-of-Labor” Mechanism by Local E1 and E3 Clusters"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","471"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Reviews Drug Discovery"],["dc.bibliographiccitation.lastpage","492"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Renaud, Jean-Paul"],["dc.contributor.author","Chari, Ashwin"],["dc.contributor.author","Ciferri, Claudio"],["dc.contributor.author","Liu, Wen-ti"],["dc.contributor.author","Rémigy, Hervé-William"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Wiesmann, Christian"],["dc.date.accessioned","2022-03-01T11:45:55Z"],["dc.date.available","2022-03-01T11:45:55Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/nrd.2018.77"],["dc.identifier.pii","BFnrd201877"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103500"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1474-1784"],["dc.relation.issn","1474-1776"],["dc.rights.uri","http://www.springer.com/tdm"],["dc.title","Cryo-EM in drug discovery: achievements, limitations and prospects"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","766"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.lastpage","778"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Golas, Mariola Monika"],["dc.contributor.author","Boehm, Cordula"],["dc.contributor.author","Sander, Bjoern"],["dc.contributor.author","Effenberger, Kerstin"],["dc.contributor.author","Brecht, Michael"],["dc.contributor.author","Stark, Holger"],["dc.contributor.author","Goeringer, H. Ulrich"],["dc.date.accessioned","2018-11-07T08:31:37Z"],["dc.date.available","2018-11-07T08:31:37Z"],["dc.date.issued","2009"],["dc.description.abstract","Mitochondrial pre-messenger RNAs in kinetoplastid protozoa are substrates of uridylate-specific RNA editing. RNA editing converts non-functional pre-mRNAs into translatable molecules and can generate protein diversity by alternative editing. Although several editing complexes have been described, their structure and relationship is unknown. Here, we report the isolation of functionally active RNA editing complexes by a multistep purification procedure. We show that the endogenous isolates contain two subpopulations of similar to 20S and similar to 35-40S and present the three-dimensional structures of both complexes by electron microscopy. The similar to 35-40S complexes consist of a platform density packed against a semispherical element. The similar to 20S complexes are composed of two subdomains connected by an interface. The two particles are structurally related, and we show that RNA binding is a main determinant for the interconversion of the two complexes. The similar to 20S editosomes contain an RNA-binding site, which binds gRNA, pre-mRNA and gRNA/pre-mRNA hybrid molecules with nanomolar affinity. Variability analysis indicates that subsets of complexes lack or possess additional domains, suggesting binding sites for components. Together, a picture of the RNA editing machinery is provided."],["dc.identifier.doi","10.1038/emboj.2009.19"],["dc.identifier.isi","000264437300017"],["dc.identifier.pmid","19197238"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17164"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","0261-4189"],["dc.title","Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS