Now showing 1 - 10 of 509
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","521"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","European Journal of Soil Science"],["dc.bibliographiccitation.lastpage","534"],["dc.bibliographiccitation.volume","69"],["dc.contributor.author","Yu, Z."],["dc.contributor.author","Chen, L."],["dc.contributor.author","Pan, S."],["dc.contributor.author","Li, Y."],["dc.contributor.author","Kuzyakov, Y."],["dc.contributor.author","Xu, J."],["dc.contributor.author","Brookes, P. C."],["dc.contributor.author","Luo, Y."],["dc.date.accessioned","2020-12-10T18:28:30Z"],["dc.date.available","2020-12-10T18:28:30Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1111/ejss.12542"],["dc.identifier.issn","1351-0754"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76351"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms"],["dc.title.alternative","Feedstock of biochar determines priming effects"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.artnumber","S0016706121002019"],["dc.bibliographiccitation.firstpage","115121"],["dc.bibliographiccitation.journal","Geoderma"],["dc.bibliographiccitation.volume","398"],["dc.contributor.author","Wei, Liang"],["dc.contributor.author","Ge, Tida"],["dc.contributor.author","Zhu, Zhenke"],["dc.contributor.author","Luo, Yu"],["dc.contributor.author","Yang, Yuanhe"],["dc.contributor.author","Xiao, Mouliang"],["dc.contributor.author","Yan, Zhifeng"],["dc.contributor.author","Li, Yuhong"],["dc.contributor.author","Wu, Jinshui"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.date.accessioned","2021-07-05T15:01:02Z"],["dc.date.available","2021-07-05T15:01:02Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.geoderma.2021.115121"],["dc.identifier.pii","S0016706121002019"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87974"],["dc.language.iso","en"],["dc.notes.intern","DOI Import DOI-Import GROB-441"],["dc.relation.issn","0016-7061"],["dc.title","Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","50"],["dc.bibliographiccitation.journal","Geoderma"],["dc.bibliographiccitation.lastpage","57"],["dc.bibliographiccitation.volume","306"],["dc.contributor.author","Kumar, Amit"],["dc.contributor.author","Dorodnikov, Maxim"],["dc.contributor.author","Splettstößer, Thomas"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Pausch, Johanna"],["dc.date.accessioned","2020-12-10T14:24:17Z"],["dc.date.available","2020-12-10T14:24:17Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.geoderma.2017.07.007"],["dc.identifier.issn","0016-7061"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72205"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Effects of maize roots on aggregate stability and enzyme activities in soil"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","76"],["dc.bibliographiccitation.journal","Geoderma"],["dc.bibliographiccitation.lastpage","82"],["dc.bibliographiccitation.volume","304"],["dc.contributor.author","Shahbaz, Muhammad"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Heitkamp, Felix"],["dc.date.accessioned","2020-12-10T14:24:17Z"],["dc.date.available","2020-12-10T14:24:17Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.geoderma.2016.05.019"],["dc.identifier.issn","0016-7061"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72202"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","989"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Ecosystems"],["dc.bibliographiccitation.lastpage","999"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Becker, Joscha N."],["dc.contributor.author","Gütlein, Adrian"],["dc.contributor.author","Sierra Cornejo, Natalia"],["dc.contributor.author","Kiese, Ralf"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.date.accessioned","2020-12-10T14:11:07Z"],["dc.date.available","2020-12-10T14:11:07Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1007/s10021-016-0087-7"],["dc.identifier.eissn","1435-0629"],["dc.identifier.issn","1432-9840"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70969"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Legume and Non-legume Trees Increase Soil Carbon Sequestration in Savanna"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","113"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Nutrient Cycling in Agroecosystems"],["dc.bibliographiccitation.lastpage","124"],["dc.bibliographiccitation.volume","98"],["dc.contributor.author","Chen, Haiqing"],["dc.contributor.author","Fan, Mingsheng"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Billen, Norbert"],["dc.contributor.author","Stahr, Karl"],["dc.date.accessioned","2018-11-07T09:43:16Z"],["dc.date.available","2018-11-07T09:43:16Z"],["dc.date.issued","2014"],["dc.description.abstract","Field measurements of net ecosystem CO2 exchange (NEE) with high temporal resolution are essential to construct a meaningful ecosystem C balance. The objectives of this study were to monitor NEE in high temporal resolution in cropland and grassland between middle August and middle November (2006) at Kleinhohenheim, Germany and to evaluate NEE in autumn. A fully automated temperature controlled closed chamber system with an infrared CO2 analyzer was used to measure NEE. The measured NEE varied between the two ecosystems depending on changes in above-ground vegetation and environmental factors. The diurnal NEE pattern of daytime CO2 uptake and night time CO2 release was evident in the grassland, but not in the cropland as the crops were harvested at the beginning of the measurement period. The grassland generally showed higher night time NEE, but lower daytime NEE than the cropland. Night time NEE showed exponential dependence on air and soil temperature, resulting in Q(10) of 1.8 and 1.9 (for air temperature), 2.3 and 2.4 (for soil temperature) in the grassland and cropland, respectively. The average daily NEE was 2.77 and 1.86 g CO2-C m(-2) day(-1) in the cropland and grassland, respectively. Both ecosystems were sources of CO2, during 3 months in autumn, but the grassland emitted less CO2 by 87.9 g CO2-C m(-2) than the cropland."],["dc.identifier.doi","10.1007/s10705-014-9600-6"],["dc.identifier.isi","000332583100001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34140"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1573-0867"],["dc.relation.issn","1385-1314"],["dc.title","Comparison of net ecosystem CO2 exchange in cropland and grassland with an automated closed chamber system"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","108697"],["dc.bibliographiccitation.journal","Soil Biology and Biochemistry"],["dc.bibliographiccitation.volume","170"],["dc.contributor.author","Button, Erik S."],["dc.contributor.author","Pett-Ridge, Jennifer"],["dc.contributor.author","Murphy, Daniel V."],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Chadwick, David R."],["dc.contributor.author","Jones, Davey L."],["dc.date.accessioned","2022-10-04T10:21:13Z"],["dc.date.available","2022-10-04T10:21:13Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100000980 Grains Research and Development Corporation"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/100000015 U.S. Department of Energy"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/100006227 Lawrence Livermore National Laboratory"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/100015846 Llywodraeth Cymru"],["dc.identifier.doi","10.1016/j.soilbio.2022.108697"],["dc.identifier.pii","S0038071722001547"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114355"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.issn","0038-0717"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","37"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biology and Fertility of Soils"],["dc.bibliographiccitation.lastpage","48"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Ge, Tida"],["dc.contributor.author","Li, Baozhen"],["dc.contributor.author","Zhu, Y."],["dc.contributor.author","Hu, Yajun"],["dc.contributor.author","Yuan, Hongzhao"],["dc.contributor.author","Dorodnikov, Maxim"],["dc.contributor.author","Jones, Davey L."],["dc.contributor.author","Wu, J."],["dc.contributor.author","Kuzyakov, Yakov"],["dc.date.accessioned","2018-11-07T10:29:26Z"],["dc.date.available","2018-11-07T10:29:26Z"],["dc.date.issued","2017"],["dc.description.abstract","Rhizodeposits have received considerable attention, as they play an important role in the regulation of soil carbon (C) sequestration and global C cycling and represent an important C and energy source for soil microorganisms. However, the utilization of rhizodeposits by microbial groups, their role in the turnover of soil organic matter (SOM) pools in rice paddies, and the effects of nitrogen (N) fertilization on rhizodeposition are nearly unknown. Rice (Oryza sativa L.) plants were grown in soil at five N fertilization rates (0, 10, 20, 40, or 60 mg N kg(-1) soil) and continuously labeled in a (CO2)-C-13 atmosphere for 18 days during tillering. The utilization of root-derived C by microbial groups was assessed by C-13 incorporation into phospholipid fatty acids. Rice shoot and root biomass strongly increased with N fertilization. Rhizodeposition increased with N fertilization, whereas the total C-13 incorporation into microorganisms, as indicated by the percentage of C-13 recovered in microbial biomass, decreased. The contribution of root-derived C-13 to SOM formation increased with root biomass. The ratio of C-13 in soil pools (SOM and microbial biomass) to C-13 in roots decreased with N fertilization showing less incorporation and faster turnover with N. The C-13 incorporation into fungi (18:2 omega 6,9c and 18:1 omega 9c), arbuscular mycorrhizal fungi (16:1 omega 5c), and actinomycetes (10Me 16:0 and 10Me 18:0) increased with N fertilization, whereas the C-13 incorporation into gram-positive (i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0) and gram-negative (16:1 omega 7c, 18:1 omega 7c, cy17:0, and cy19:0) bacteria decreased with N fertilization. Thus, the uptake and microbial processing of root-derived C was affected by N availability in soil. Compared with the unfertilized soil, the contribution of rhizodeposits to SOM and microorganisms increased at low to intermediate N fertilization rates but decreased at the maximum N input. We conclude that belowground C allocation and rhizodeposition by rice, microbial utilization of rhizodeposited C, and its stabilization within SOM pools are strongly affected by N availability: N fertilization adequate to the plant demand increases C incorporation in all these polls, but excessive N fertilization has negative effects not only on environmental pollution but also on C sequestration in soil."],["dc.identifier.doi","10.1007/s00374-016-1155-z"],["dc.identifier.isi","000391367600005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43643"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.issn","1432-0789"],["dc.relation.issn","0178-2762"],["dc.title","Rice rhizodeposition and its utilization by microbial groups depends on N fertilization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","S0929139322000117"],["dc.bibliographiccitation.firstpage","104395"],["dc.bibliographiccitation.journal","Applied Soil Ecology"],["dc.bibliographiccitation.volume","173"],["dc.contributor.author","Xiao, Dan"],["dc.contributor.author","He, Xunyang"],["dc.contributor.author","Wang, Guihong"],["dc.contributor.author","Xu, Xuechi"],["dc.contributor.author","Hu, Yajun"],["dc.contributor.author","Chen, Xiangbi"],["dc.contributor.author","Zhang, Wei"],["dc.contributor.author","Su, Yirong"],["dc.contributor.author","Wang, Kelin"],["dc.contributor.author","Soromotin, Andrey V."],["dc.contributor.author","Kuzyakov, Yakov"],["dc.date.accessioned","2022-05-02T08:09:48Z"],["dc.date.available","2022-05-02T08:09:48Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1016/j.apsoil.2022.104395"],["dc.identifier.pii","S0929139322000117"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107468"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-561"],["dc.relation.issn","0929-1393"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Network analysis reveals bacterial and fungal keystone taxa involved in straw and soil organic matter mineralization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","107872"],["dc.bibliographiccitation.journal","Soil Biology and Biochemistry"],["dc.bibliographiccitation.volume","148"],["dc.contributor.author","Zhang, Xuechen"],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Zang, Huadong"],["dc.contributor.author","Dippold, Michaela A."],["dc.contributor.author","Shi, Lingling"],["dc.contributor.author","Spielvogel, Sandra"],["dc.contributor.author","Razavi, Bahar S."],["dc.date.accessioned","2021-04-14T08:23:19Z"],["dc.date.available","2021-04-14T08:23:19Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.soilbio.2020.107872"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80869"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.haserratum","/handle/2/82569"],["dc.relation.issn","0038-0717"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.title","Rhizosphere hotspots: Root hairs and warming control microbial efficiency, carbon utilization and energy production"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI