Now showing 1 - 5 of 5
  • 2002Journal Article
    [["dc.bibliographiccitation.firstpage","752"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","761"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Reusch, Uwe"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Koszinowski, Ulrich"],["dc.contributor.author","Schu, Peter"],["dc.date.accessioned","2018-11-07T10:02:16Z"],["dc.date.available","2018-11-07T10:02:16Z"],["dc.date.issued","2002"],["dc.description.abstract","Heterotetrameric adaptor-protein complexes AP-1A and AP-3A mediate protein sorting in post-Golgi vesicular transport. AP-1A and AP-3A have been localized to the trans -Golgi network, indicating a function in protein sorting at this compartment. AP-3A appears to mediate trans -Golgi network-to-lysosome and also endosome-to-lysosome protein sorting. AP-1A is thought to be required for both trans -Golgi network-to-endosome transport and endosome-to-trans -Golgi network transport. However, the recent discovery of a role for monomeric GGA (Golgi localized gamma-ear containing, ARF binding protein) adaptor proteins in trans -Golgi network to endosome protein transport has brought into question the long-discussed trans -Golgi network-to-endosome sorting function of AP-1A. Murine cytomegalovirus gp48 contains an unusual di-leucine-based lysosome sorting signal motif and mediates lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes, preventing exposure of major histocompatibility complex class I at the plasma membrane. We analyzed lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes in cell lines deficient for AP-1A, AP-3A and both, to determine their sorting functions. We find that AP1-A and AP3-A mediate distinct and sequential steps in the lysosomal sorting. Both sorting functions are required to prevent MHC class I exposure at the plasma membrane at steady-state."],["dc.identifier.doi","10.1034/j.1600-0854.2002.31007.x"],["dc.identifier.isi","000178003100007"],["dc.identifier.pmid","12230473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38189"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","Najko"],["dc.relation.issn","1398-9219"],["dc.title","AP-1A and AP-3A lysosomal sorting functions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3473"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","3485"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Wrobel, Lidia"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:36Z"],["dc.date.available","2017-09-07T11:45:36Z"],["dc.date.issued","2014"],["dc.description.abstract","More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40's presequence-interacting regions to both sides of the beta-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import."],["dc.identifier.doi","10.1128/MCB.00433-14"],["dc.identifier.gro","3142065"],["dc.identifier.isi","000341024900010"],["dc.identifier.pmid","25002531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4156"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.title","Presequence Recognition by the Tom40 Channel Contributes to Precursor Translocation into the Mitochondrial Matrix"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","561"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","570.e6"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Chowdhury, Arpita"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Wozny, Katharina"],["dc.contributor.author","Lüchtenborg, Christian"],["dc.contributor.author","Hartmann, Magnus"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Balleiniger, Martina"],["dc.contributor.author","Alfar, Ezzaldin Ahmed"],["dc.contributor.author","Zieseniß, Anke"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Brügger, Britta"],["dc.contributor.author","Fischer, Andrè"],["dc.contributor.author","Katschinski, Dörthe M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2019-01-17T15:41:24Z"],["dc.date.available","2019-01-17T15:41:24Z"],["dc.date.issued","2018"],["dc.description.abstract","Summary: Mitochondria fulfill vital metabolic functions and act as crucial cellular signaling hubs, integrating their metabolic status into the cellular context. Here, we show that defective cardiolipin remodeling, upon loss of the cardiolipin acyl transferase tafazzin, decreases HIF-1α signaling in hypoxia. Tafazzin deficiency does not affect posttranslational HIF-1α regulation but rather HIF-1α gene expression, a dysfunction recapitulated in iPSC-derived cardiomyocytes from Barth syndrome patients with tafazzin deficiency. RNA-seq analyses confirmed drastically altered signaling in tafazzin mutant cells. In hypoxia, tafazzin-deficient cells display reduced production of reactive oxygen species (ROS) perturbing NF-κB activation and concomitantly HIF-1α gene expression. Tafazzin-deficient mice hearts display reduced HIF-1α levels and undergo maladaptive hypertrophy with heart failure in response to pressure overload challenge. We conclude that defective mitochondrial cardiolipin remodeling dampens HIF-1α signaling due to a lack of NF-κB activation through reduced mitochondrial ROS production, decreasing HIF-1α transcription."],["dc.identifier.doi","10.1016/j.celrep.2018.09.057"],["dc.identifier.pmid","30332638"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15391"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57349"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/237"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1002 | D04: Bedeutung der Methylierung von RNA (m6A) und des Histons H3 (H3K4) in der Herzinsuffizienz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","2211-1247"],["dc.relation.workinggroup","RG A. Fischer (Epigenetics and Systems Medicine in Neurodegenerative Diseases)"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Defective Mitochondrial Cardiolipin Remodeling Dampens HIF-1α Expression in Hypoxia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","27"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","37.e4"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Schlotawa, Lars"],["dc.contributor.author","Wachs, Michaela"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Mayer, Franz J."],["dc.contributor.author","Dierks, Thomas"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Radhakrishnan, Karthikeyan"],["dc.date.accessioned","2020-12-10T14:23:00Z"],["dc.date.available","2020-12-10T14:23:00Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.celrep.2018.06.016"],["dc.identifier.issn","2211-1247"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71803"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Recognition and ER Quality Control of Misfolded Formylglycine-Generating Enzyme by Protein Disulfide Isomerase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","S131"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Genetics and Metabolism"],["dc.bibliographiccitation.lastpage","S132"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Schlotawa, Lars"],["dc.contributor.author","Wachs, Michaela"],["dc.contributor.author","Bernhard, Olaf"],["dc.contributor.author","Mayer, Franz J."],["dc.contributor.author","Dierks, Thomas"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Radhakrishnan, Karthikeyan"],["dc.date.accessioned","2020-12-10T15:21:50Z"],["dc.date.available","2020-12-10T15:21:50Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.ymgme.2018.12.338"],["dc.identifier.issn","1096-7192"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73180"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Protein disulfide isomerase is a possible target for disease modification in multiple sulfatase deficiency"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI