Now showing 1 - 10 of 84
  • 2019Journal Article Discussion
    [["dc.bibliographiccitation.firstpage","860"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Nature Photonics"],["dc.bibliographiccitation.lastpage","865"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Ghosh, Arindam"],["dc.contributor.author","Sharma, Akshita"],["dc.contributor.author","Chizhik, Alexey I."],["dc.contributor.author","Isbaner, Sebastian"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Tsukanov, Roman"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2020-12-10T18:09:58Z"],["dc.date.available","2020-12-10T18:09:58Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41566-019-0510-7"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73814"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/21"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Enderlein"],["dc.title","Graphene-based metal-induced energy transfer for sub-nanometre optical localization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","letter_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2013Book Chapter
    [["dc.bibliographiccitation.firstpage","175"],["dc.bibliographiccitation.lastpage","204"],["dc.bibliographiccitation.seriesnr","518"],["dc.contributor.author","Pieper, Christoph"],["dc.contributor.author","Weiß, Kerstin"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2018-04-23T11:49:29Z"],["dc.date.available","2018-04-23T11:49:29Z"],["dc.date.issued","2013"],["dc.description.abstract","This chapter introduces into the technique of dual-focus fluorescence correlation spectroscopy or 2fFCS. In 2fFCS, the fluorescence signals generated in two laterally shifted but overlapping focal regions are auto- and crosscorrelated. The resulting correlation curves are then used to determine diffusion coefficients of fluorescent molecules or particles in solutions or membranes. Moreover, the technique can also be used for noninvasively measuring flow-velocity profiles in three dimensions. Because the distance between the focal regions is precisely known and not changed by most optical aberrations, this provides an accurate and immutable external length scale for determining diffusivities and velocities, making 2fFCS the method of choice for accurately measuring absolute values of these quantities at pico- to nanomolar concentration."],["dc.identifier.doi","10.1016/b978-0-12-388422-0.00008-x"],["dc.identifier.gro","3142130"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13711"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103104"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.publisher","Elsevier"],["dc.relation.crisseries","Methods in Enzymology"],["dc.relation.isbn","978-0-12-388422-0"],["dc.relation.ispartof","Methods in Enzymology"],["dc.relation.issn","0076-6879"],["dc.title","Dual-Focus Fluorescence Correlation Spectroscopy"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2005Journal Article
    [["dc.bibliographiccitation.firstpage","164"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.bibliographiccitation.lastpage","170"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Patra, Digambara"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2021-03-05T08:58:06Z"],["dc.date.available","2021-03-05T08:58:06Z"],["dc.date.issued","2005"],["dc.identifier.doi","10.1002/cphc.200400319"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80005"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.title","Optical Saturation in Fluorescence Correlation Spectroscopy under Continuous-Wave and Pulsed Excitation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","e3000943"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","PLoS Biology"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Trevisiol, Andrea"],["dc.contributor.author","Kusch, Kathrin"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Nardis, Christos"],["dc.contributor.author","Winkler, Ulrike"],["dc.contributor.author","Köhler, Susanne"],["dc.contributor.author","Restrepo, Alejandro"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Hirrlinger, Johannes"],["dc.date.accessioned","2021-04-14T08:31:16Z"],["dc.date.available","2021-04-14T08:31:16Z"],["dc.date.issued","2020"],["dc.description.abstract","In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon–myelin unit contribute to the phenotype of Plpnull/y mice."],["dc.identifier.doi","10.1371/journal.pbio.3000943"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83539"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/20"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P08: Strukturelle und funktionale Veränderungen der inneren mitochondrialen Membran axonaler Mitochondrien in vivo in einem dymyelinisierenden Mausmodell"],["dc.relation.eissn","1545-7885"],["dc.relation.workinggroup","RG Möbius"],["dc.rights","CC BY 4.0"],["dc.title","Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","1075"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","1091"],["dc.bibliographiccitation.volume","198"],["dc.contributor.author","Kashikar, Nachikel D."],["dc.contributor.author","Alvarez, Luis"],["dc.contributor.author","Seifert, Reinhard"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Jaeckle, Oliver"],["dc.contributor.author","Beyermann, Michael"],["dc.contributor.author","Krause, Eberhard"],["dc.contributor.author","Kaupp, Ulrich Benjamin"],["dc.date.accessioned","2018-11-07T09:05:51Z"],["dc.date.available","2018-11-07T09:05:51Z"],["dc.date.issued","2012"],["dc.description.abstract","Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca2+ oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2-0.6 s before a Ca2+ response was produced. Additional molecules delivered during a Ca2+ response reset the cell by causing a pronounced Ca2+ drop that terminated the response; this reset was followed by a new Ca2+ rise. After stimulation, sperm adapted their sensitivity following the Weber-Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/mu m and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well."],["dc.description.sponsorship","German Research Foundation; Fonds der Chemischen Industrie"],["dc.identifier.doi","10.1083/jcb.201204024"],["dc.identifier.isi","000309004300012"],["dc.identifier.pmid","22986497"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25417"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.title","Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1472"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","1475"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Schneider, Falk"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2018-04-23T11:48:54Z"],["dc.date.available","2018-04-23T11:48:54Z"],["dc.date.issued","2017"],["dc.description.abstract","Precise knowledge of the quantum yield is important for many fluorescence–spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence–spectroscopic studies involving lipid bilayers, such as protein–protein or protein–lipid interactions in membranes or direct fluorescence–spectroscopic measurements of membrane physical properties."],["dc.identifier.doi","10.1021/acs.jpclett.7b00422"],["dc.identifier.gro","3142101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13599"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1948-7185"],["dc.title","Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2004Journal Article
    [["dc.bibliographiccitation.firstpage","6836"],["dc.bibliographiccitation.issue","33"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory"],["dc.bibliographiccitation.lastpage","6841"],["dc.bibliographiccitation.volume","108"],["dc.contributor.author","Patra, Digambara"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2021-03-05T08:58:25Z"],["dc.date.available","2021-03-05T08:58:25Z"],["dc.date.issued","2004"],["dc.identifier.doi","10.1021/jp048188m"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80128"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.eissn","1520-5215"],["dc.relation.issn","1089-5639"],["dc.title","Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018-05-28Journal Article
    [["dc.bibliographiccitation.artnumber","204201"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","The Journal of Chemical Physics"],["dc.bibliographiccitation.volume","148"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Chizhik, Anna M."],["dc.contributor.author","Stein, Simon C"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Chizhik, Alexey I."],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2020-05-29T09:29:43Z"],["dc.date.available","2020-05-29T09:29:43Z"],["dc.date.issued","2018-05-28"],["dc.description.abstract","Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films."],["dc.identifier.doi","10.1063/1.5027074"],["dc.identifier.pmid","29865842"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66012"],["dc.language.iso","en"],["dc.relation.eissn","1089-7690"],["dc.relation.issn","0021-9606"],["dc.title","Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Conference Paper
    [["dc.bibliographiccitation.firstpage","790330"],["dc.bibliographiccitation.seriesnr","21"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Krämer, B."],["dc.contributor.author","Koberling, F."],["dc.contributor.author","Erdmann, Rainer"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Wahl, M."],["dc.contributor.author","Fore, S."],["dc.contributor.editor","Periasamy, Ammasi"],["dc.contributor.editor","König, Karsten"],["dc.contributor.editor","So, Peter T. C."],["dc.date.accessioned","2018-05-02T15:05:10Z"],["dc.date.available","2018-05-02T15:05:10Z"],["dc.date.issued","2011"],["dc.description.abstract","The combination of simultaneous spectral detection together with Fluorescence Lifetime Imaging (sFLIM) allows collecting the complete information inherent to the fluorescence signal. Their fingerprint of lifetime and spectral properties identify the fluorescent labels unambiguously. Multiple labels can be investigated in parallel and separated from inherent auto-fluorescence of the sample. In addition, spectral FLIM FRET has the prospect to allow simultaneous detection of multiple FRET signals with quantitative analysis of FRET-efficiency and degree of binding. Spectral FLIM measurements generate huge amount of data. Suitable analysis procedures must be found to condense the inherent information to answer the scientific questions in a straightforward way. Different analysis techniques have been evaluated for a diversity of applications as multiplex labeling, quantitative determination of environmental parameters and distance measurements via FLIM FRET. In order to reach highest sensitivity in single photon detection, different detector types are investigated and developed. SPAD arrays equipped with micro-lenses promise superior detection efficiency while the integration of a spectrograph with a PMT array is easier to realize and allows for a higher number of detection channels. High detection speed can be realized through parallel TCSPC channels. In order to overcome the limits of the USB 2.0 interface, new interface solutions have been realized for the multichannel TCSPC unit HydraHarp 400."],["dc.identifier.doi","10.1117/12.873386"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13817"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.publisher","SPIE"],["dc.publisher.place","Washington"],["dc.relation.crisseries","Progress in Biomedical Optics and Imaging"],["dc.relation.doi","10.1117/12.873386"],["dc.relation.eventend","2011-01-25"],["dc.relation.eventlocation","San Francisco, California, United States"],["dc.relation.eventstart","2011-01-23"],["dc.relation.isbn","978-0-8194-8440-6"],["dc.relation.ispartof","Proc. SPIE 7903, Multiphoton Microscopy in the Biomedical Sciences XI"],["dc.relation.ispartofseries","Progress in biomedical optics and imaging 12;21"],["dc.relation.issn","1605-7422"],["dc.relation.issn","1605-7422"],["dc.title","Fast algorithms for the analysis of spectral FLIM data"],["dc.type","conference_paper"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2005Journal Article
    [["dc.bibliographiccitation.firstpage","2527"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Optics Letters"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2021-03-05T08:59:10Z"],["dc.date.available","2021-03-05T08:59:10Z"],["dc.date.issued","2005"],["dc.identifier.doi","10.1364/OL.30.002527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80380"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation.eissn","1539-4794"],["dc.relation.issn","0146-9592"],["dc.title","Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI