Options
Schregel, Katharina
Loading...
Preferred name
Schregel, Katharina
Official Name
Schregel, Katharina
Alternative Name
Schregel, K.
Main Affiliation
Now showing 1 - 10 of 33
2018Journal Article [["dc.bibliographiccitation.firstpage","2283"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Stroke"],["dc.bibliographiccitation.lastpage","2284"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.contributor.author","Schregel, Katharina"],["dc.date.accessioned","2020-12-10T18:38:08Z"],["dc.date.available","2020-12-10T18:38:08Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1161/STROKEAHA.118.022148"],["dc.identifier.eissn","1524-4628"],["dc.identifier.issn","0039-2499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77194"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Relativity of Ischemic Core Volume Estimation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","362"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Stroke"],["dc.bibliographiccitation.lastpage","372"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Tsogkas, Ioannis"],["dc.contributor.author","Peter, Carolin"],["dc.contributor.author","Zapf, Antonia"],["dc.contributor.author","Behme, Daniel"],["dc.contributor.author","Schnieder, Marlena"],["dc.contributor.author","Maier, Ilko L."],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.date.accessioned","2021-06-01T10:48:59Z"],["dc.date.available","2021-06-01T10:48:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.5853/jos.2018.00605"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86121"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","2287-6405"],["dc.relation.issn","2287-6391"],["dc.title","Outcome Prediction Using Perfusion Parameters and Collateral Scores of Multi-Phase and Single-Phase CT Angiography in Acute Stroke: Need for One, Two, Three, or Thirty Scans?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","287"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Neuroradiology Journal"],["dc.bibliographiccitation.lastpage","293"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Schnieder, M"],["dc.contributor.author","Psychogios, MN"],["dc.contributor.author","Maier, IL"],["dc.contributor.author","Tsogkas, I"],["dc.contributor.author","Schregel, K"],["dc.contributor.author","Kleinknecht, A"],["dc.contributor.author","Knauth, M"],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Behme, D"],["dc.date.accessioned","2020-12-10T18:38:38Z"],["dc.date.available","2020-12-10T18:38:38Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1177/1971400918791700"],["dc.identifier.eissn","2385-1996"],["dc.identifier.issn","1971-4009"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77395"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The problem of strict image-based inclusion criteria for mechanical thrombectomy – an analysis of stroke patients with an initial low CBV-ASPECTS score"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.journal","Frontiers in Neurology"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Maier, Ilko L."],["dc.contributor.author","Hofer, Sabine"],["dc.contributor.author","Eggert, Eva"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.contributor.author","Frahm, Jens"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Liman, Jan"],["dc.date.accessioned","2021-04-14T08:31:11Z"],["dc.date.available","2021-04-14T08:31:11Z"],["dc.date.issued","2020"],["dc.description.abstract","Age-related degeneration of the cervical spinal column is the most common cause of spinal cord lesions. T1 mapping has been shown to indicate the grade and site of spinal cord compression in low grade spinal canal stenosis (SCS). Aim of our study was to further investigate the diagnostic potential of a novel T1 mapping method at 0.75 mm resolution and 4 s acquisition time in 31 patients with various grades of degenerative cervical SCS. T1 mapping was performed in axial sections of the stenosis as well as above and below. Included subjects received standard T2-weighted MRI of the cervical spine (including SCS-grading 0-III), electrophysiological, and clinical examination. We found that patients with cervical SCS showed a significant difference in T1 relaxation times within the stenosis (727 ± 66 ms, mean ± standard deviation) in comparison to non-stenotic segments above (854 ± 104 ms, p \\u0026lt; 0.001) and below (893 ± 137 ms, p \\u0026lt; 0.001). There was no difference in mean T1 in non-stenotic segments in patients (p = 0.232) or between segments in controls (p = 0.272). Mean difference of the T1 relaxation times was significantly higher in grade III stenosis (234 ± 45) vs. in grade II stenosis (176 ± 45, p = 0.037) vs. in grade I stenosis (90 ± 87 ms, p = 0.010). A higher difference in T1 relaxation time was associated with a central efferent conduction deficit. In conclusion, T1 mapping may be useful as a tool for SCS quantification in all grades of SCS, including high-grade stenosis with myelopathy signal in conventional T2-weighted imaging."],["dc.identifier.doi","10.3389/fneur.2020.574604"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83508"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-2295"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","T1 Mapping Quantifies Spinal Cord Compression in Patients With Various Degrees of Cervical Spinal Canal Stenosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Neurology"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Tsogkas, Ioannis"],["dc.contributor.author","Malinova, Vesna"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Mielke, Dorothee"],["dc.contributor.author","Behme, Daniel"],["dc.contributor.author","Rohde, Veit"],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.date.accessioned","2021-04-14T08:25:15Z"],["dc.date.available","2021-04-14T08:25:15Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1186/s12883-020-01792-3"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17436"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81571"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1471-2377"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Angioplasty with the scepter C dual lumen balloon catheter and postprocedural result evaluation in patients with subarachnoid hemorrhage related vasospasms"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Maier, Ilko L."],["dc.contributor.author","Behme, Daniel"],["dc.contributor.author","Schnieder, Marlena"],["dc.contributor.author","Tsogkas, Ioannis"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.date.accessioned","2018-01-08T17:09:39Z"],["dc.date.available","2018-01-08T17:09:39Z"],["dc.date.issued","2017"],["dc.description.abstract","Identification of patients requiring decompressive hemicraniectomy (DH) after endovascular therapy (EVT) is crucial as clinical signs are not reliable and early DH has been shown to improve clinical outcome. The aim of our study was to identify imaging-based scores to predict the risk for space occupying ischemic stroke and DH."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1371/journal.pone.0173737"],["dc.identifier.pmid","28282456"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11572"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Early computed tomography-based scores to predict decompressive hemicraniectomy after endovascular therapy in acute ischemic stroke"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.artnumber","1391843"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Stroke Research and Treatment"],["dc.bibliographiccitation.lastpage","6"],["dc.bibliographiccitation.volume","2017"],["dc.contributor.author","Maier, Ilko L."],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Karch, André"],["dc.contributor.author","Weber-Krueger, Mark"],["dc.contributor.author","Mikolajczyk, Rafael T."],["dc.contributor.author","Stahrenberg, Raoul"],["dc.contributor.author","Gröschel, Klaus"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.contributor.author","Wachter, Rolf"],["dc.contributor.author","Liman, Jan"],["dc.date.accessioned","2018-04-23T11:47:07Z"],["dc.date.available","2018-04-23T11:47:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Background. Atrial fibrillation (AF) is an important cause of embolic stroke of undetermined source (ESUS). Imaging-patterns like multiple infarcts, simultaneous involvement of different circulations, infarcts of different ages, and isolated cortical infarcts are likely to indicate cardioembolic stroke. The aim of our study was to evaluate the association between embolic stroke patterns, ESUS, and the new diagnosis of AF. Methods. Stroke etiology and imaging characteristics from patients included in the Find-AF study were obtained. Embolic stroke patterns in CT- or MR-imaging were correlated with the diagnosis of ESUS as well as the short- (on baseline ECG and during 7-day Holter) and long-term (12-month follow-up) diagnosis of AF. Results. From 281 patients included in the Find-AF study, 127 (45.2%) patients with ischemic lesions detected in CT or MRI were included. 26 (20.5%) of these patients had ESUS. At least one embolic stroke pattern was detected in 67 (52.7%) patients. Embolic stroke patterns were not associated with ESUS (OR 1.57, 0.65–3.79, ), the short-term (OR 0.64, 0.26–1.58, ) or long-term diagnosis of AF (OR 0.72, 0.31–1.68, ). Conclusions. This secondary data analysis of the Find-AF study could not provide evidence for an association between embolic stroke patterns, ESUS, and the new diagnosis of AF."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1155/2017/1391843"],["dc.identifier.gro","3142074"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13300"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2090-8105"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Association between Embolic Stroke Patterns, ESUS Etiology, and New Diagnosis of Atrial Fibrillation: A Secondary Data Analysis of the Find-AF Trial"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","1253"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Journal of NeuroInterventional Surgery"],["dc.bibliographiccitation.lastpage","1257"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Leyhe, Johanna Rosemarie"],["dc.contributor.author","Tsogkas, Ioannis"],["dc.contributor.author","Hesse, Amélie Carolina"],["dc.contributor.author","Behme, Daniel"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Papageorgiou, Ismini"],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.date.accessioned","2020-12-10T18:37:18Z"],["dc.date.available","2020-12-10T18:37:18Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1136/neurintsurg-2016-012866"],["dc.identifier.eissn","1759-8486"],["dc.identifier.issn","1759-8478"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76904"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Latest generation of flat detector CT as a peri-interventional diagnostic tool: a comparative study with multidetector CT"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cancer Imaging"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Nowicki, Michal O."],["dc.contributor.author","Palotai, Miklos"],["dc.contributor.author","Nazari, Navid"],["dc.contributor.author","Zane, Rachel"],["dc.contributor.author","Sinkus, Ralph"],["dc.contributor.author","Lawler, Sean E."],["dc.contributor.author","Patz, Samuel"],["dc.date.accessioned","2021-04-14T08:26:30Z"],["dc.date.available","2021-04-14T08:26:30Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1186/s40644-020-00314-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81973"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1470-7330"],["dc.title","Magnetic Resonance Elastography reveals effects of anti-angiogenic glioblastoma treatment on tumor stiffness and captures progression in an orthotopic mouse model"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.artnumber","e0202592"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Maier, Ilko L."],["dc.contributor.author","Scalzo, Fabien"],["dc.contributor.author","Leyhe, Johanna R."],["dc.contributor.author","Schregel, Katharina"],["dc.contributor.author","Behme, Daniel"],["dc.contributor.author","Tsogkas, Ioannis"],["dc.contributor.author","Psychogios, Marios-Nikos"],["dc.contributor.author","Liebeskind, David S."],["dc.date.accessioned","2019-07-09T11:46:07Z"],["dc.date.available","2019-07-09T11:46:07Z"],["dc.date.issued","2018"],["dc.description.abstract","BACKGROUND: The pivotal impact of collateral circulation on outcomes in endovascular therapy has fueled the development of numerous CTA collateral scales, yet synchronized validation with conventional angiography has never occurred. We validated multiphase flat-detector CTA (mpFDCTA) for collateral imaging in patients undergoing endovascular stroke treatment. MATERIALS AND METHODS: Consecutive acute ischemic stroke patient data, including mpFDCTA shortly followed by digital subtraction angiography (DSA), in the setting of acute ICA- or MCA-occlusions were analyzed. An independent core lab scored mpFDCTA with an established collateral scale and separately graded American Society of Interventional and Therapeutic Neuroradiology (ASITN) collateral score on DSA, blind to all other data. RESULTS: 24 consecutive cases (age 76.7 ± 7.3 years; 58.3% women; baseline NIHSS median 17 (4-23)) of acute ICA- or MCA-occlusion were analyzed. Time from mpFDCTA to intracranial DSA was 23.04 ± 7.6 minutes. Median mpFDCTA collateral score was 3 (0-5) and median DSA ASITN collateral score was 2 (0-3), including the full range of potential collateral grades. mpFDCTA and ASITN collateral score were strongly correlated (r = 0.86, p<0.001). mpFDCTA provided more complete collateral data compared to selective DSA injections in cases of ICA-occlusion. ROC analyses for prediction of clinical outcomes revealed an AUC of 0.76 for mpFDCTA- and 0.70 for DSA ASITN collaterals. CONCLUSIONS: mpFDCTA in the angiography suite provides a validated measure of collaterals, offering distinct advantages over conventional angiography. Direct patient transfer to the angiography suite and mpFDCTA collateral grading provides a novel and reliable triage paradigm for acute ischemic stroke."],["dc.identifier.doi","10.1371/journal.pone.0202592"],["dc.identifier.pmid","30142167"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59377"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15695 but duplicate"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Validation of collateral scoring on flat-detector multiphase CT angiography in patients with acute ischemic stroke"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC