Options
Dräger, Julia
Loading...
Preferred name
Dräger, Julia
Official Name
Dräger, Julia
Alternative Name
Dräger, J.
Draeger, Julia
Draeger, J.
Main Affiliation
Now showing 1 - 2 of 2
2017Journal Article [["dc.bibliographiccitation.firstpage","3259"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","3273"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Draeger, Julia"],["dc.contributor.author","Simon-Keller, Katja"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Klemm, Florian"],["dc.contributor.author","Wilting, Joerg"],["dc.contributor.author","Sticht, Carsten"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Schulz, Matthias"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Marx, Alexander"],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T10:28:26Z"],["dc.date.available","2018-11-07T10:28:26Z"],["dc.date.issued","2017"],["dc.description.abstract","Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas beta-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.18632/oncotarget.13887"],["dc.identifier.isi","000391506300114"],["dc.identifier.pmid","27965462"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43418"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","2923"],["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Oncogene"],["dc.bibliographiccitation.lastpage","2931"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Nitzki, F."],["dc.contributor.author","Cuvelier, Nicole"],["dc.contributor.author","Draeger, Julia"],["dc.contributor.author","Schneider, Anja"],["dc.contributor.author","Braun, Thomas"],["dc.contributor.author","Hahn, H."],["dc.date.accessioned","2018-11-07T10:12:55Z"],["dc.date.available","2018-11-07T10:12:55Z"],["dc.date.issued","2016"],["dc.description.abstract","Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. In children, the 2 major RMS subtypes are alveolar and embryonal RMS. Aberrant Hedgehog/Patched1 (Hh/Ptch) signaling is a hallmark of embryonal RMS. We demonstrate that mice carrying a Ptch mutation in mesodermal Delta1-expressing cells develop embryonal-like RMS at a similar rate as mice harboring a Ptch mutation in the germline or the brachury-expressing mesoderm. The tumor incidence decreases dramatically when Ptch is mutated in Myf5- or Pax3-expressing cells. No RMS develop from Myogenin/Mef2c-expressing cells. This suggests that Hh/Ptch-associated RMS are derived from Delta1-positive, Myf5-negative, Myogenin-negative and Pax3-negative mesodermal progenitors that can undergo myogenic differentiation but lack stable lineage commitment. Additional preliminary genetic data and data on mesodermal progenitors further imply an interplay of Hh/Ptch and Delta/Notch signaling activity during RMS initiation. In contrast, Wnt signals supposedly suppress RMS formation because RMS multiplicity decreases after inactivation of the Wnt-inhibitor Wif1. Finally, our results strongly suggest that the tumor-initiating event determines the lineage of RMS origin."],["dc.description.sponsorship","DFG [HA2197/7-1]"],["dc.identifier.doi","10.1038/onc.2015.346"],["dc.identifier.isi","000377473700012"],["dc.identifier.pmid","26387541"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40330"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1476-5594"],["dc.relation.issn","0950-9232"],["dc.title","Hedgehog/Patched-associated rhabdomyosarcoma formation from delta1-expressing mesodermal cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS