Now showing 1 - 10 of 36
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Weninger, Gunnar"],["dc.contributor.author","Pochechueva, Tatiana"],["dc.contributor.author","El Chami, Dana"],["dc.contributor.author","Luo, Xiaojing"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.date.accessioned","2022-07-01T07:34:53Z"],["dc.date.available","2022-07-01T07:34:53Z"],["dc.date.issued","2022"],["dc.description.abstract","Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca 2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT 1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca 2+ -dependent manner, closely associated with euchromatic chromosomal regions, where NT 1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT 1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Deutsches Zentrum für Herz-Kreislaufforschung http://dx.doi.org/10.13039/100010447"],["dc.description.sponsorship","Herzzentrum Göttingen"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.1038/s41598-022-14320-9"],["dc.identifier.pii","14320"],["dc.identifier.pmid","35725601"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112032"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/179"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/508"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/435"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-581"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P03: Erhaltung und funktionelle Kopplung von ER-Kontakten mit der Plasmamembran"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.eissn","2045-2322"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT1-fragment domains in cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","318a"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Walker, Mark A."],["dc.contributor.author","Williams, George S. B."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Jafri, Saleet"],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Greenstein, Joseph L."],["dc.contributor.author","Lederer, W. J."],["dc.contributor.author","Winslow, Raimond L."],["dc.date.accessioned","2022-03-01T11:44:58Z"],["dc.date.available","2022-03-01T11:44:58Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.bpj.2013.11.1839"],["dc.identifier.pii","S000634951303097X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103175"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Super-Resolution Modeling of Calcium Release in Heart"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2013Journal Article
    [["dc.bibliographiccitation.artnumber","201"],["dc.bibliographiccitation.journal","Frontiers in physiology"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Herrmann, Solveig"],["dc.contributor.author","Ninkovic, Milena"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Pardo, Luis A."],["dc.date.accessioned","2019-07-09T11:40:08Z"],["dc.date.available","2019-07-09T11:40:08Z"],["dc.date.issued","2013"],["dc.description.abstract","Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1, this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target. The Golgi resident protein PIST binds several membrane proteins, thereby modulating their expression. Here we describe a PDZ domain-mediated interaction of KV10.1 and PIST, which enhances surface levels of KV10.1. The functional, but not the physical interaction of both proteins is dependent on the coiled-coil and PDZ domains of PIST; insertion of eight amino acids in the coiled-coil domain to render the neural form of PIST (nPIST) and the corresponding short isoform in an as-of-yet unknown form abolishes the effect. In addition, two new isoforms of PIST (sPIST and nsPIST) lacking nearly the complete PDZ domain were cloned and shown to be ubiquitously expressed. PIST and KV10.1 co-precipitate from native and expression systems. nPIST also showed interaction, but did not alter the functional expression of the channel. We could not document physical interaction between KV10.1 and sPIST, but it reduced KV10.1 functional expression in a dominant-negative manner. nsPIST showed weak physical interaction and no functional effect on KV10.1. We propose these isoforms to work as modulators of PIST function via regulating the binding on interaction partners."],["dc.identifier.doi","10.3389/fphys.2013.00201"],["dc.identifier.fs","604131"],["dc.identifier.pmid","23966943"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10690"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58100"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1664-042X"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","305a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","102"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Parlitz, Ulrich"],["dc.contributor.author","Lauterbach, Marcel"],["dc.contributor.author","Minh Tuan, Hoang-Trong"],["dc.contributor.author","Williams, George S.B."],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Jafri, M. Saleet"],["dc.contributor.author","Lederer, W.J."],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2022-03-01T11:44:54Z"],["dc.date.available","2022-03-01T11:44:54Z"],["dc.date.issued","2012"],["dc.identifier.doi","10.1016/j.bpj.2011.11.1683"],["dc.identifier.pii","S0006349511030311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103157"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","STED Nanoscopy of Cardiac RyR2 Clusters and Sub-Structure Analysis After Myocardial Infarction"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.artnumber","e26329"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Lörinczi, Eva"],["dc.contributor.author","Pardo, Luis A."],["dc.contributor.author","Stühmer, Walter"],["dc.date.accessioned","2018-11-07T08:50:44Z"],["dc.date.available","2018-11-07T08:50:44Z"],["dc.date.issued","2011"],["dc.description.abstract","K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by alpha-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells."],["dc.identifier.doi","10.1371/journal.pone.0026329"],["dc.identifier.isi","000295976000098"],["dc.identifier.pmid","22022602"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8343"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21761"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","Najko"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Rapid Internalization of the Oncogenic K+ Channel K(V)10.1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Rudolph, Franziska"],["dc.contributor.author","Fink, Claudia"],["dc.contributor.author","Hüttemeister, Judith"],["dc.contributor.author","Kirchner, Marieluise"],["dc.contributor.author","Radke, Michael H."],["dc.contributor.author","Lopez Carballo, Jacobo"],["dc.contributor.author","Wagner, Eva"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Mertins, Philipp"],["dc.contributor.author","Gotthardt, Michael"],["dc.date.accessioned","2021-04-14T08:25:49Z"],["dc.date.available","2021-04-14T08:25:49Z"],["dc.date.issued","2020"],["dc.description.abstract","Proximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin’s Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context."],["dc.identifier.doi","10.1038/s41467-020-16929-8"],["dc.identifier.pmid","32561764"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81738"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/358"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.rights","CC BY 4.0"],["dc.title","Deconstructing sarcomeric structure–function relations in titin-BioID knock-in mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2010Conference Abstract
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of General Physiology"],["dc.bibliographiccitation.volume","136"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Lauterbach, Marcel A."],["dc.contributor.author","Wagner, Edward J."],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Hagen, Brian M."],["dc.contributor.author","Lederer, W. Jonathan"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2018-11-07T08:41:47Z"],["dc.date.available","2018-11-07T08:41:47Z"],["dc.date.issued","2010"],["dc.format.extent","9A"],["dc.identifier.isi","000279473500028"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19548"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Rockefeller Univ Press"],["dc.publisher.place","New york"],["dc.relation.eventlocation","Marine Biol Lab, Woods Hole, MA"],["dc.relation.issn","0022-1295"],["dc.title","Super-Resolution Imaging of Cardiac Signaling Microdomains by STED Microscopy"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2014Conference Abstract
    [["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Walker, Mark A."],["dc.contributor.author","Williams, George S. B."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Jafri, Saleet"],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Greenstein, Joseph L."],["dc.contributor.author","Lederer, W. Jonathan"],["dc.contributor.author","Winslow, Raimond L."],["dc.date.accessioned","2018-11-07T09:44:57Z"],["dc.date.available","2018-11-07T09:44:57Z"],["dc.date.issued","2014"],["dc.format.extent","318A"],["dc.identifier.isi","000337000401734"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34510"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.issn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.title","Super-Resolution Modeling of Calcium Release in Heart"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Conference Abstract
    [["dc.bibliographiccitation.firstpage","223A"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","224A"],["dc.bibliographiccitation.volume","102"],["dc.contributor.author","Wagner, Eva M."],["dc.contributor.author","Lauterbach, Marcel A."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Williams, George S. B."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Streich, Jan-Hendrik"],["dc.contributor.author","Tuan, Hoang-Trong M."],["dc.contributor.author","Hagen, Brian M."],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Parlitz, Ulrich"],["dc.contributor.author","Jafri, Mohsin S."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lederer, W. Jonathan"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2018-11-07T09:14:13Z"],["dc.date.available","2018-11-07T09:14:13Z"],["dc.date.issued","2012"],["dc.identifier.isi","000321561201431"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27356"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.eventlocation","San Diego, CA"],["dc.relation.issn","0006-3495"],["dc.title","Live Cell Super-Resolution Imaging of Transverse Membrane Tubules in Heart Failure"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","402"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.lastpage","414"],["dc.bibliographiccitation.volume","111"],["dc.contributor.author","Wagner, Eva"],["dc.contributor.author","Lauterbach, Marcel A."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Williams, George S. B."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Streich, Jan-Hendrik"],["dc.contributor.author","Korff, Brigitte"],["dc.contributor.author","Tuan, Hoang-Trong M."],["dc.contributor.author","Hagen, Brian"],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Parlitz, Ulrich"],["dc.contributor.author","Jafri, M. Saleet"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Lederer, W. Jonathan"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2017-09-07T11:48:29Z"],["dc.date.available","2017-09-07T11:48:29Z"],["dc.date.issued","2012"],["dc.description.abstract","Rationale: Transverse tubules (TTs) couple electric surface signals to remote intracellular Ca2+ release units (CRUs). Diffraction-limited imaging studies have proposed loss of TT components as disease mechanism in heart failure (HF). Objectives: Objectives were to develop quantitative super-resolution strategies for live-cell imaging of TT membranes in intact cardiomyocytes and to show that TT structures are progressively remodeled during HF development, causing early CRU dysfunction. Methods and Results: Using stimulated emission depletion (STED) microscopy, we characterized individual TTs with nanometric resolution as direct readout of local membrane morphology 4 and 8 weeks after myocardial infarction (4pMI and 8pMI). Both individual and network TT properties were investigated by quantitative image analysis. The mean area of TT cross sections increased progressively from 4pMI to 8pMI. Unexpectedly, intact TT networks showed differential changes. Longitudinal and oblique TTs were significantly increased at 4pMI, whereas transversal components appeared decreased. Expression of TT-associated proteins junctophilin-2 and caveolin-3 was significantly changed, correlating with network component remodeling. Computational modeling of spatial changes in HF through heterogeneous TT reorganization and RyR2 orphaning (5000 of 20 000 CRUs) uncovered a local mechanism of delayed subcellular Ca2+ release and action potential prolongation. Conclusions: This study introduces STED nanoscopy for live mapping of TT membrane structures. During early HF development, the local TT morphology and associated proteins were significantly altered, leading to differential network remodeling and Ca2+ release dyssynchrony. Our data suggest that TT remodeling during HF development involves proliferative membrane changes, early excitation-contraction uncoupling, and network fracturing."],["dc.identifier.doi","10.1161/CIRCRESAHA.112.274530"],["dc.identifier.gro","3142487"],["dc.identifier.isi","000307308700007"],["dc.identifier.pmid","22723297"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8829"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/73"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.issn","0009-7330"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Luther (Biomedical Physics)"],["dc.title","Stimulated Emission Depletion Live-Cell Super-Resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures After Myocardial Infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS