Now showing 1 - 10 of 122
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","35"],["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.lastpage","36"],["dc.bibliographiccitation.volume","213"],["dc.contributor.author","Keppeler, Daniel"],["dc.contributor.author","Jeschke, Marcus"],["dc.contributor.author","Wrobel, C."],["dc.contributor.author","Hoch, Gerhard"],["dc.contributor.author","Gossler, Christian"],["dc.contributor.author","Schwarz, U. T."],["dc.contributor.author","Ruther, P."],["dc.contributor.author","Schwaerzle, M."],["dc.contributor.author","Hessler, R."],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Kügler, Sebastian"],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2018-11-07T09:59:50Z"],["dc.date.available","2018-11-07T09:59:50Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362554200073"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37681"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.title","In vivo application of optogenetics in the auditory system"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2009Conference Abstract
    [["dc.bibliographiccitation.firstpage","49"],["dc.bibliographiccitation.journal","Journal of Neurochemistry"],["dc.bibliographiccitation.lastpage","50"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Drinkut, Anja"],["dc.contributor.author","Nagel, F."],["dc.contributor.author","Kramer, Edgar R."],["dc.contributor.author","Kuegler, Sebastian"],["dc.contributor.author","Schulz, Joerg B."],["dc.date.accessioned","2018-11-07T08:28:17Z"],["dc.date.available","2018-11-07T08:28:17Z"],["dc.date.issued","2009"],["dc.identifier.isi","000266400900131"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16385"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.publisher.place","Malden"],["dc.relation.conference","4th European-Society-for-Neurochemistry Conference on Advances in Molecular Mechanisms of Neurological Disorders"],["dc.relation.eventlocation","Leipzig, GERMANY"],["dc.relation.issn","0022-3042"],["dc.title","Role of the RET/GDNF signaling pathway in protection of the nigro-striatal system in a MPTP mouse model for Parkinson's disease"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","8127"],["dc.bibliographiccitation.issue","26"],["dc.bibliographiccitation.journal","Theranostics"],["dc.bibliographiccitation.lastpage","8137"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Weber-Adrian, Danielle"],["dc.contributor.author","Kofoed, Rikke Hahn"],["dc.contributor.author","Chan, Josephine Wing Yee"],["dc.contributor.author","Silburt, Joseph"],["dc.contributor.author","Noroozian, Zeinab"],["dc.contributor.author","Kügler, Sebastian"],["dc.contributor.author","Hynynen, Kullervo"],["dc.contributor.author","Aubert, Isabelle"],["dc.date.accessioned","2020-12-10T18:48:04Z"],["dc.date.available","2020-12-10T18:48:04Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.7150/thno.36718"],["dc.identifier.issn","1838-7640"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16672"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79002"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Strategy to enhance transgene expression in proximity of amyloid plaques in a mouse model of Alzheimer's disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","247"],["dc.bibliographiccitation.issue","3-4"],["dc.bibliographiccitation.journal","Human Molecular Genetics"],["dc.bibliographiccitation.lastpage","264"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Psol, Maryna"],["dc.contributor.author","Darvas, Sofia Guerin"],["dc.contributor.author","Leite, Kristian"],["dc.contributor.author","Mahajani, Sameehan U"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Kügler, Sebastian"],["dc.date.accessioned","2021-07-05T14:57:32Z"],["dc.date.available","2021-07-05T14:57:32Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Beta (ß)-synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson’s disease-related alpha (α)-synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in central nervous system (CNS) neurons in vitro and in vivo, albeit at a slower pace as compared with α-Syn. Here, we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of dementia with Lewy bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but it has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but it does not aggravate neurodegeneration. ß-Syn wild type (WT), V70M and P123H formed proteinase K-resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared with α-Syn. Under cell-free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared with WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, which are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn and is thus likely to be directly involved into the etiology of DLB. Overall, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn."],["dc.description.abstract","Abstract Beta (ß)-synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson’s disease-related alpha (α)-synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in central nervous system (CNS) neurons in vitro and in vivo, albeit at a slower pace as compared with α-Syn. Here, we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of dementia with Lewy bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but it has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but it does not aggravate neurodegeneration. ß-Syn wild type (WT), V70M and P123H formed proteinase K-resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared with α-Syn. Under cell-free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared with WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, which are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn and is thus likely to be directly involved into the etiology of DLB. Overall, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn."],["dc.identifier.doi","10.1093/hmg/ddab036"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87669"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-441"],["dc.relation.eissn","1460-2083"],["dc.relation.issn","0964-6906"],["dc.title","Dementia with Lewy bodies—associated ß-synuclein mutations V70M and P123H cause mutation-specific neuropathological lesions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2003Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","89"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Virology"],["dc.bibliographiccitation.lastpage","95"],["dc.bibliographiccitation.volume","311"],["dc.contributor.author","Kügler, S"],["dc.contributor.author","Schöll, U"],["dc.contributor.author","Zolotukhin, S"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Bähr, Mathias"],["dc.date.accessioned","2021-06-01T10:50:07Z"],["dc.date.available","2021-06-01T10:50:07Z"],["dc.date.issued","2003"],["dc.description.abstract","Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology. (C) 2003 Elsevier Science (USA). All rights reserved."],["dc.identifier.doi","10.1016/S0042-6822(03)00162-4"],["dc.identifier.gro","3144097"],["dc.identifier.isi","000184042900010"],["dc.identifier.pmid","12832206"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86537"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0042-6822"],["dc.title","Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","479"],["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Can, Karolina"],["dc.contributor.author","Menzfeld, Christiane"],["dc.contributor.author","Rinne, Lena"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Kügler, Sebastian"],["dc.contributor.author","Golubiani, Gocha"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Müller, Michael"],["dc.date.accessioned","2019-07-09T11:51:15Z"],["dc.date.available","2019-07-09T11:51:15Z"],["dc.date.issued","2019"],["dc.description.abstract","Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT."],["dc.identifier.doi","10.3389/fphys.2019.00479"],["dc.identifier.pmid","31114506"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16085"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59907"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A06: Mitochondrienfunktion und -umsatz in Synapsen"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O2 Consumption and ROS Release"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 1999Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","479"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochemical and Biophysical Research Communications"],["dc.bibliographiccitation.lastpage","483"],["dc.bibliographiccitation.volume","265"],["dc.contributor.author","Roth, W"],["dc.contributor.author","Isenmann, Stefan"],["dc.contributor.author","Naumann, U."],["dc.contributor.author","Kugler, S."],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Dichgans, J."],["dc.contributor.author","Ashkenazi, A."],["dc.contributor.author","Weller, M"],["dc.date.accessioned","2017-09-07T11:47:27Z"],["dc.date.available","2017-09-07T11:47:27Z"],["dc.date.issued","1999"],["dc.description.abstract","Glioblastoma multiforme is a lethal neoplasm refractory to radiochemotherapy, Although glioma cells undergo apoptosis when exposed to the death ligand, CD95 (Fas/APO-1) ligand, the therapeutic use of CD95L is considered impossible because of lethal side effects. Here, we report that the locoregional application of Apoa ligand (Apo2L) exerts strong antitumor activity on preestablished intracranially growing human U87MG glioma xenografts in athymic mice. Two repetitive intratumoral injections of 2 mu g Apo2L resulted in long-term survival of mice (>100 days), whereas the median survival of mock-treated mice was 36 days. The assessment of tumor volumes at 21 and 35 days after inoculation showed complete eradication of glioma xenografts in Apo2L-treated mice. Histology and TUNEL assay confirmed the induction of apoptosis by Apo2L in glioma cells in vivo. Importantly, the intracerebral injection of Apo2L does not result in acute or delayed neurotoxicity. We propose that a phase 1 trial of intralesional Apo2L therapy for human glioblastoma multiforme is warranted. (C) 1999 Academic Press."],["dc.identifier.doi","10.1006/bbrc.1999.1693"],["dc.identifier.gro","3144435"],["dc.identifier.isi","000083899100038"],["dc.identifier.pmid","10558893"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2059"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Academic Press Inc"],["dc.relation.issn","0006-291X"],["dc.title","Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2002Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","123"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Neurobiology of Disease"],["dc.bibliographiccitation.lastpage","133"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Straten, G"],["dc.contributor.author","Schmeer, C."],["dc.contributor.author","Kretz, A."],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Kugler, S."],["dc.contributor.author","Schulz, Joerg B."],["dc.contributor.author","Gravel, C."],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Isenmann, Stefan"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2002"],["dc.description.abstract","Following transection of the optic nerve (ON) in the adult rat, retinal ganglion cells (RGCs) undergo degeneration, and within 14 days 85% of axotomized RGCs die by apoptosis. Adenoviral delivery of the mammalian caspase inhibitor X-chromosome-linked inhibitor of apoptosis (Ad.XIAP) to the ON stump leads to expression exclusively in RGCs and rescues 18.9% of the RGCs that would degenerate without treatment. Following adenoviral vector injection into the vitreous body, bioactive glial cell line-derived neurotrophic factor (Ad.GDNF) is expressed in the retina and secreted to rescue 22.8% of lesioned RGCs. Here we report that coadministration of Ad.XIAP retrogradely directed to RGCs and intravitreal Ad.GDNF acts synergistically to protect axotomized RGCs. Combination treatment rescued 47.3% of RGCs that would undergo apoptosis without any treatment as opposed to 37.4% that would be expected if the two treatments acted independently. While without treatment only 15% of axotomized RGCs would survive, combination treatment resulted in survival of 55.4% of the total RGC population. These findings underline the neuroprotective potential of synergistic effects of a combination of different treatment strategies. (C) 2002 Elsevier Science (USA)."],["dc.identifier.doi","10.1006/nbdi.2002.0543"],["dc.identifier.gro","3144173"],["dc.identifier.isi","000179314100011"],["dc.identifier.pmid","12460552"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1768"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0969-9961"],["dc.title","Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Conference Abstract
    [["dc.bibliographiccitation.firstpage","15"],["dc.bibliographiccitation.journal","Journal of Neurochemistry"],["dc.bibliographiccitation.lastpage","16"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Ziemlinska, Ewelina"],["dc.contributor.author","Skup, Malgorzata"],["dc.contributor.author","Czarkowska-Bauch, Julita"],["dc.contributor.author","Kuegler, Sebastian"],["dc.date.accessioned","2018-11-07T08:28:15Z"],["dc.date.available","2018-11-07T08:28:15Z"],["dc.date.issued","2009"],["dc.identifier.isi","000266400900040"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16379"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.publisher.place","Malden"],["dc.relation.conference","4th European-Society-for-Neurochemistry Conference on Advances in Molecular Mechanisms of Neurological Disorders"],["dc.relation.eventlocation","Leipzig, GERMANY"],["dc.relation.issn","0022-3042"],["dc.title","Construct of mature BDNF with secreted alkaline phosphatase signal peptide fail to be released by HEK cells"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","109"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Annals of Neurology"],["dc.bibliographiccitation.lastpage","118"],["dc.bibliographiccitation.volume","74"],["dc.contributor.author","Taschenberger, G."],["dc.contributor.author","Toloe, J."],["dc.contributor.author","Tereshchenko, J."],["dc.contributor.author","Akerboom, J."],["dc.contributor.author","Wales, P."],["dc.contributor.author","Benz, R."],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Outeiro, T. F."],["dc.contributor.author","Looger, L. L."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Zweckstetter, M."],["dc.contributor.author","Kügler, Sebastian"],["dc.date.accessioned","2017-09-07T11:47:39Z"],["dc.date.available","2017-09-07T11:47:39Z"],["dc.date.issued","2013"],["dc.description.abstract","ObjectiveWhereas the contribution of -synuclein to neurodegeneration in Parkinson disease is well accepted, the putative impact of its close homologue, -synuclein, is enigmatic. -Synuclein is widely expressed throughout the central nervous system, as is -synuclein, but the physiological functions of both proteins remain unknown. Recent findings have supported the view that -synuclein can act as an ameliorating regulator of -synuclein-induced neurotoxicity, having neuroprotective rather than neurodegenerative capabilities, and being nonaggregating due to the absence of most of the aggregation-promoting NAC domain. However, a mutation of -synuclein linked to dementia with Lewy bodies rendered the protein neurotoxic in transgenic mice, and fibrillation of -synuclein has been demonstrated in vitro. MethodsNeurotoxicity and aggregation properties of -, -, and -synuclein were comparatively elucidated in the rat nigro-striatal projection and in cultured neurons. ResultsSupporting the hypothesis that -synuclein can act as a neurodegeneration-inducing factor, we demonstrated that wild-type -synuclein is neurotoxic for cultured primary neurons. Furthermore, -synuclein formed proteinase K-resistant aggregates in dopaminergic neurons in vivo, leading to pronounced and progressive neurodegeneration in rats. Expression of -synuclein caused mitochondrial fragmentation, but this fragmentation did not render mitochondria nonfunctional in terms of ion handling and respiration even at late stages of neurodegeneration. A comparison of the neurodegenerative effects induced by -, -, and -synuclein revealed that -synuclein was eventually as neurotoxic as -synuclein for nigral dopaminergic neurons, whereas -synuclein proved to be nontoxic and had very low aggregation propensity. InterpretationOur results suggest that the role of -synuclein as a putative modulator of neuropathology in aggregopathies like Parkinson disease and dementia with Lewy bodies needs to be revisited. Ann Neurol 2013;74:109-118"],["dc.identifier.doi","10.1002/ana.23905"],["dc.identifier.gro","3142329"],["dc.identifier.isi","000329198600014"],["dc.identifier.pmid","23536356"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7075"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1531-8249"],["dc.relation.issn","0364-5134"],["dc.title","β-Synuclein Aggregates and Induces Neurodegeneration in Dopaminergic Neurons"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS