Now showing 1 - 6 of 6
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","cmdc.202100222"],["dc.bibliographiccitation.firstpage","3300"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","ChemMedChem"],["dc.bibliographiccitation.lastpage","3305"],["dc.bibliographiccitation.volume","16"],["dc.contributor.affiliation","Raad, Farah S.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Khan, Taukeer A.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Esser, Tilman U.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Hudson, James E.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Seth, Bhakti Irene; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Fujita, Buntaro; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Gandamala, Ravi; 3\r\nInstitute of Organic and Biomolecular Chemistry\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Tietze, Lutz F.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Zimmermann, Wolfram-Hubertus; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.author","Raad, Farah S."],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Esser, Tilman U."],["dc.contributor.author","Hudson, James E."],["dc.contributor.author","Seth, Bhakti Irene"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Gandamala, Ravi"],["dc.contributor.author","Tietze, Lutz F."],["dc.contributor.author","Zimmermann, Wolfram H."],["dc.date.accessioned","2021-10-01T09:58:46Z"],["dc.date.available","2021-10-01T09:58:46Z"],["dc.date.issued","2021"],["dc.date.updated","2022-03-21T00:45:29Z"],["dc.description.abstract","Abstract Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small‐molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two‐tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4’‐hydroxychalcone [4’HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self‐organize into contractile engineered human myocardium (EHM). We identified 4’HC, 4‐fluoro‐4’‐methoxychalcone, and 4‐fluoro‐4’‐hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4’HC as an effective replacement for BMP4 in the derivation of contractile EHM‐forming cardiomyocytes."],["dc.description.abstract","Have a little heart: A screen for mesoderm inducing chalcones in human pluripotent stem cell cultures identified 4’‐hydroxychalcone (4’HC) as an effective replacement for bone‐morphogenetic protein 4 (BMP4) in supporting the derivation of engineered heart muscle (EHM)‐formation competent cardiomyocytes. image"],["dc.description.sponsorship","German Center for Cardiovascular Research"],["dc.description.sponsorship","German Federal Ministry for Science and Education"],["dc.description.sponsorship","German Research Foundation http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Fondation Leducq http://dx.doi.org/10.13039/501100001674"],["dc.identifier.doi","10.1002/cmdc.202100222"],["dc.identifier.pmid","34309224"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90137"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/432"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1860-7187"],["dc.relation.issn","1860-7179"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Chalcone‐Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","2007"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Organic Letters"],["dc.bibliographiccitation.lastpage","2010"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Fornefeld, Torsten"],["dc.contributor.author","Hübner, Dennis"],["dc.contributor.author","Vana, Philipp"],["dc.contributor.author","Tietze, Lutz F."],["dc.date.accessioned","2018-08-14T15:26:49Z"],["dc.date.available","2018-08-14T15:26:49Z"],["dc.date.issued","2018"],["dc.description.abstract","A palladium-catalyzed 4-fold domino reaction consisting of two carbopalladation reactions and two C–H activation reactions, followed by the introduction of an acrylate moiety, led to the tetra-substituted helical alkene A2, using the dialkyne A3 as a substrate. The alkene was copolymerized with butyl acrylate by using the reversible addition–fragmentation chain transfer polymerization (RAFT) to give the desired polymeric switch A1."],["dc.identifier.doi","10.1021/acs.orglett.8b00553"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15296"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","Palladium-Catalyzed 4-Fold Domino Reaction for the Synthesis of a Polymeric Double Switch"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","6070"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Chemistry – A European Journal"],["dc.bibliographiccitation.lastpage","6076"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Grimm, Florian"],["dc.contributor.author","Rehman, Jasmin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Schlötel, Jan Gero"],["dc.contributor.author","Nizamov, Shamil"],["dc.contributor.author","John, Michael"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2021-06-01T09:41:16Z"],["dc.date.available","2021-06-01T09:41:16Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1002/chem.202005134"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84865"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1521-3765"],["dc.relation.issn","0947-6539"],["dc.title","Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy "],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","434"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Chemistry of Heterocyclic Compounds"],["dc.bibliographiccitation.lastpage","445"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Tietze, Lutz Friedjan"],["dc.contributor.author","Bischoff, Matthias"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Liu, Deshan"],["dc.date.accessioned","2018-11-07T10:25:14Z"],["dc.date.available","2018-11-07T10:25:14Z"],["dc.date.issued","2017"],["dc.description.abstract","The fused heterocyclic indolizinoquinolinone system is a key structural feature of several highly bioactive alkaloids, including camptothecin. Camptothecin has been efficiently obtained by a three- or four-component domino Knoevenagel / hetero-Diels-Alder reaction of aldehyde, Meldrum's acid, and enol ether in the presence or absence of alcohol, followed by reductive cleavage of the amine protecting group. The obtained products were further transformed along several different routes leading to camptothecin."],["dc.identifier.doi","10.1007/s10593-017-2070-4"],["dc.identifier.isi","000401912500008"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42815"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.issn","1573-8353"],["dc.relation.issn","0009-3122"],["dc.title","Synthesis of indolizinoquinolinones through three- and four-component domino Knoevenagel/hetero-Diels-Alder reactions: novel access to (+)-camptothecin"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Nature Biotechnology"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","von der Emde, Henrik"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Gunkel, Philip"],["dc.contributor.author","Sambandan, Sivakumar"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Cordes, Volker C."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-12-01T08:30:53Z"],["dc.date.available","2022-12-01T08:30:53Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with\n σ\n  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision\n σ\n  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells."],["dc.identifier.doi","10.1038/s41587-022-01519-4"],["dc.identifier.pii","1519"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118008"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1546-1696"],["dc.relation.issn","1087-0156"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","MINSTED nanoscopy enters the Ångström localization range"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","451"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Chemistry – A European Journal"],["dc.bibliographiccitation.lastpage","458"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Patalag, Lukas J."],["dc.contributor.author","Bossi, Mariano"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-03-01T11:45:14Z"],["dc.date.available","2022-03-01T11:45:14Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1002/chem.202004645"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103260"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1521-3765"],["dc.relation.issn","0947-6539"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Photoactivatable Fluorophore for Stimulated Emission Depletion (STED) Microscopy and Bioconjugation Technique for Hydrophobic Labels"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI