Now showing 1 - 2 of 2
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","045019"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Environmental Research Letters"],["dc.bibliographiccitation.volume","4"],["dc.contributor.affiliation","Panferov, O;"],["dc.contributor.affiliation","Doering, C;"],["dc.contributor.affiliation","Rauch, E;"],["dc.contributor.affiliation","Sogachev, A;"],["dc.contributor.affiliation","Ahrends, B;"],["dc.contributor.author","Panferov, Oleg"],["dc.contributor.author","Rauch, Elke"],["dc.contributor.author","Sogachev, A."],["dc.contributor.author","Ahrends, Bernd"],["dc.contributor.author","Doering, C"],["dc.date.accessioned","2018-11-07T11:23:29Z"],["dc.date.available","2018-11-07T11:23:29Z"],["dc.date.issued","2009"],["dc.date.updated","2022-02-09T13:18:55Z"],["dc.description.abstract","Wind damage is one of the major natural disturbances that can occur worldwide in most types of forests. Enhanced management using adequate decision support systems (DSS) can considerably reduce the risk of windthrow. The decision support system 'Forest and Climate Change' (DSS-WuK) which is currently being developed at Gottingen University aims at providing a tool for the quantitative assessment of biotic and abiotic risks for forest ecosystems under the conditions of changing climate. In order to assess the future risks of wind damage the system employs a coupled modelling approach combining the turbulence model SCAlar DIStribution (SCADIS) with the soil-vegetation-atmosphere-transfer (SVAT) model BROOK 90. The present study investigates projections of wind damage in Solling, Germany under climate scenarios A1B and B1, taking into account the windthrow feedbacks-changes of microclimate as a result of tree fall and consequent stabilization or destabilization of a forest stand. The results of the study indicate that in Solling the risk of windthrow for spruce and pine forest stands is likely to increase considerably during the 21st century. The general tendencies indicate that under A1B the probability of damage would be higher than under B1 and that under the same climate and soil conditions the risk for spruce stands would be higher than for pine stands of equal age. The degree of damage and feedback contribution as well as a sign of feedback in each particular case will strongly depend on the particular local or regional combination of climatic and soil factors with tree species, age and structure. For Solling the positive feedback to local climatic forcing is found. The feedback contributes considerably (up to 6% under given conditions) to the projected forest damage and cannot be neglected. Therefore, the adequate projection of future damage probabilities can be performed only with a process-based coupled soil-atmosphere model with corresponding high spatial and temporal resolution."],["dc.identifier.doi","10.1088/1748-9326/4/4/045019"],["dc.identifier.isi","000272900500036"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5858"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/56209"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1748-9326"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1176"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","1185"],["dc.bibliographiccitation.volume","65"],["dc.contributor.author","Doering, Christin"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Gertig, Ulla"],["dc.contributor.author","van Rossum, Denise"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","Saiepour, Nasrin"],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Janova, Hana"],["dc.date.accessioned","2018-11-07T10:22:27Z"],["dc.date.available","2018-11-07T10:22:27Z"],["dc.date.issued","2017"],["dc.description.abstract","Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type."],["dc.description.sponsorship","German Research Council (DFG) [SFB/TRR43, FOR1336]"],["dc.identifier.doi","10.1002/glia.23151"],["dc.identifier.isi","000401345400011"],["dc.identifier.pmid","28471051"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42277"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley"],["dc.relation.issn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.title","A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS