Options
Mejia, Yara X.
Loading...
Preferred name
Mejia, Yara X.
Official Name
Mejia, Yara X.
Alternative Name
Mejia, Y. X.
Now showing 1 - 2 of 2
2014Journal Article [["dc.bibliographiccitation.firstpage","3281"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","3284"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Mejia, Yara X."],["dc.contributor.author","Feindt, Holger"],["dc.contributor.author","Zhang, Dongfeng"],["dc.contributor.author","Steltenkamp, Siegfried"],["dc.contributor.author","Burg, Thomas P."],["dc.date.accessioned","2021-06-01T10:50:45Z"],["dc.date.available","2021-06-01T10:50:45Z"],["dc.date.issued","2014"],["dc.description.abstract","Microfluidic approach that enables cryofixation to be performed directly in the light microscope with millisecond time resolution and at atmospheric pressure."],["dc.description.abstract","Cryofixation yields outstanding ultrastructural preservation of cells for electron microscopy, but current methods disrupt live cell imaging. Here we demonstrate a microfluidic approach that enables cryofixation to be performed directly in the light microscope with millisecond time resolution and at atmospheric pressure. This will provide a link between imaging/stimulation of live cells and post-fixation optical, electron, or X-ray microscopy."],["dc.identifier.doi","10.1039/C4LC00333K"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86773"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1473-0189"],["dc.relation.issn","1473-0197"],["dc.title","Microfluidic cryofixation for correlative microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","6"],["dc.contributor.author","Faoro, Raffaele"],["dc.contributor.author","Bassu, Margherita"],["dc.contributor.author","Mejia, Yara X."],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Dudani, Nikunj"],["dc.contributor.author","Boeker, Christian"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Burg, Thomas P."],["dc.date.accessioned","2018-01-30T08:10:07Z"],["dc.date.available","2018-01-30T08:10:07Z"],["dc.date.issued","2018"],["dc.description.abstract","Cryogenic fluorescent light microscopy of flash-frozen cells stands out by artifact-free fixation and very little photobleaching of the fluorophores used. To attain the highest level of resolution, aberration-free immersion objectives with accurately matched immersion media are required, but both do not exist for imaging below the glass-transition temperature of water. Here, we resolve this challenge by combining a cryoimmersion medium, HFE-7200, which matches the refractive index of room-temperature water, with a technological concept in which the body of the objective and the front lens are not in thermal equilibrium. We implemented this concept by replacing the metallic front-lens mount of a standard bioimaging water immersion objective with an insulating ceramic mount heated around its perimeter. In this way, the objective metal housing can be maintained at room temperature, while creating a thermally shielded cold microenvironment around the sample and front lens. To demonstrate the range of potential applications, we show that our method can provide superior contrast in Escherichia coli and yeast cells expressing fluorescent proteins and resolve submicrometer structures in multicolor immunolabeled human bone osteosarcoma epithelial (U2OS) cells at [Formula: see text]C."],["dc.identifier.doi","10.1073/pnas.1717282115"],["dc.identifier.pmid","29358380"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11902"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1091-6490"],["dc.title","Aberration-corrected cryoimmersion light microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC