Now showing 1 - 6 of 6
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","15655"],["dc.bibliographiccitation.issue","49"],["dc.bibliographiccitation.journal","Angewandte Chemie"],["dc.bibliographiccitation.lastpage","15659"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Roubinet, Benoît"],["dc.contributor.author","Bossi, Mariano L."],["dc.contributor.author","Alt, Philipp"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Shojaei, Heydar"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Nizamov, Shamil"],["dc.contributor.author","Irie, Masahiro"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-04-23T11:48:24Z"],["dc.date.available","2018-04-23T11:48:24Z"],["dc.date.issued","2016"],["dc.description.abstract","Reversibel photoschaltbares 1,2‐Bis(2‐ethyl‐6‐phenyl‐1‐benzothiophen‐1,1‐dioxid‐3‐yl)perfluorcyclopenten (EBT) mit fluoreszierender “geschlossener” Form wurde mit vier oder acht Carboxygruppen versehen und an Antikörper gebunden. Die carboxylierten Derivate wiesen geringe Aggregation, effizientes Photoschalten in wässrigen Puffern, gezieltes Färben von zellulären Strukturen und gute photophysikalische Eigenschaften auf. Abwechselnde Bestrahlung mit UV und blauem Licht relativ geringer Intensität führte zu reversibler photochemischer Isomerisierung zwischen zwei stabilen Strukturen über mehrere dutzend Schaltzyklen. Dies ermöglichte die Verwendung der Farbstoffe für hochauflösende RESOLFT‐Mikroskopie (“reversible switchable optical linear fluorescence transitions”). Hierbei konnte eine optische Auflösung von 75 nm an zellulären Tubulin‐Filamenten erzielt werden."],["dc.identifier.doi","10.1002/ange.201607940"],["dc.identifier.gro","3142364"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13503"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","0044-8249"],["dc.title","Carboxylierte photoschaltbare Diarylethene als Biomarkierungen für hochauflösende RESOLFT-Mikroskopie"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","15429"],["dc.bibliographiccitation.issue","49"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","15433"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Roubinet, Benoît"],["dc.contributor.author","Bossi, Mariano L."],["dc.contributor.author","Alt, Philipp"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Shojaei, Heydar"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Nizamov, Shamil"],["dc.contributor.author","Irie, Masahiro"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:53:03Z"],["dc.date.available","2017-09-07T11:53:03Z"],["dc.date.issued","2016"],["dc.description.abstract","Reversibly photoswitchable 1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes (EBT) having fluorescent “closed” forms were decorated with four or eight carboxylic groups and attached to antibodies. Low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and good photophysical properties were demonstrated. Alternating light pulses of UV and blue light induce numerous reversible photochemical transformations between two stables states with distinct structures. Using relatively low light intensities, EBTs were applied in biology-related super-resolution microscopy based on the reversible saturable (switchable) optical linear fluorescence transitions (RESOLFT) and demonstrated optical resolution of 75 nm."],["dc.identifier.doi","10.1002/anie.201607940"],["dc.identifier.gro","3145016"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2706"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1433-7851"],["dc.title","Carboxylated Photoswitchable Diarylethenes for Biolabeling and Super-Resolution RESOLFT Microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e15567"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Vorbrüggen, Gerd"],["dc.contributor.author","Herzig, Alf"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:48:05Z"],["dc.date.available","2020-12-10T18:48:05Z"],["dc.date.issued","2016"],["dc.description.abstract","Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grodohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 ism deep within fly tissues."],["dc.identifier.doi","10.7554/eLife.15567"],["dc.identifier.eissn","2050-084X"],["dc.identifier.fs","626317"],["dc.identifier.gro","3141660"],["dc.identifier.isi","000379856900001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13549"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79008"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2050-084X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2020Journal Article
    [["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Plant Direct"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Ghareeb, Hassan"],["dc.contributor.author","Frahm, Lars"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Jensen, Nickels"],["dc.contributor.author","Teichmann, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lipka, Volker"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:23:40Z"],["dc.date.available","2021-04-14T08:23:40Z"],["dc.date.issued","2020"],["dc.description.abstract","Abstract Subdiffraction super‐resolution fluorescence microscopy, or nanoscopy, has seen remarkable developments in the last two decades. Yet, for the visualization of plant cells, nanoscopy is still rarely used. In this study, we established RESOLFT nanoscopy on living green plant tissue. Live‐cell RESOLFT nanoscopy requires and utilizes comparatively low light doses and intensities to overcome the diffraction barrier. We generated a transgenic Arabidopsis thaliana plant line expressing the reversibly switchable fluorescent protein rsEGFP2 fused to the mammalian microtubule‐associated protein 4 (MAP4) in order to ubiquitously label the microtubule cytoskeleton. We demonstrate the use of RESOLFT nanoscopy for extended time‐lapse imaging of cortical microtubules in Arabidopsis leaf discs. By combining our approach with fluorescence lifetime gating, we were able to acquire live‐cell RESOLFT images even close to chloroplasts, which exhibit very strong autofluorescence. The data demonstrate the feasibility of subdiffraction resolution imaging in transgenic plant material with minimal requirements for sample preparation."],["dc.identifier.doi","10.1002/pld3.261"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81007"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2475-4455"],["dc.relation.issn","2475-4455"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Live‐cell RESOLFT nanoscopy of transgenic Arabidopsis thaliana"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","3324"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Chemical Science"],["dc.bibliographiccitation.lastpage","3334"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Lukinavičius, Gražvydas"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Barthel, Hannah"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-03-01T11:46:09Z"],["dc.date.available","2022-03-01T11:46:09Z"],["dc.date.issued","2018"],["dc.description.abstract","Nanoscopy compatible fluorescent tubulin probes can be used to stain microtubules and chitin-rich taenidia in the insect tracheoles."],["dc.description.abstract","We introduce fluorogenic tubulin probes based on the recently reported fluorescent dyes (510R, 580CP, GeR and SiR) and chemotherapy agents – taxanes (docetaxel, cabazitaxel and larotaxel). The cytotoxicity of the final probe, its staining performance and specificity strongly depend on both components. We found correlation between the aggregation efficiency (related to the spirolactonization of fluorophore) and cytotoxicity. Probe optimization allowed us to reach 29 ± 11 nm resolution in stimulated emission depletion (STED) microscopy images of the microtubule network in living human fibroblasts. Application to living fruit fly ( Drosophila melanogaster ) tissues highlighted two distinct structures: microtubules and tracheoles. We identified 6-carboxy isomers of 580CP and SiR dyes as markers for chitin-containing taenidia, a component of tracheoles. STED microscopy revealed correlation between the taenidia periodicity and the diameter of the tracheole. Combined tubulin and taenidia STED imaging showed close interaction between the microtubules and respiratory networks in living tissues of the insect larvae."],["dc.description.abstract","Nanoscopy compatible fluorescent tubulin probes can be used to stain microtubules and chitin-rich taenidia in the insect tracheoles."],["dc.description.abstract","We introduce fluorogenic tubulin probes based on the recently reported fluorescent dyes (510R, 580CP, GeR and SiR) and chemotherapy agents – taxanes (docetaxel, cabazitaxel and larotaxel). The cytotoxicity of the final probe, its staining performance and specificity strongly depend on both components. We found correlation between the aggregation efficiency (related to the spirolactonization of fluorophore) and cytotoxicity. Probe optimization allowed us to reach 29 ± 11 nm resolution in stimulated emission depletion (STED) microscopy images of the microtubule network in living human fibroblasts. Application to living fruit fly ( Drosophila melanogaster ) tissues highlighted two distinct structures: microtubules and tracheoles. We identified 6-carboxy isomers of 580CP and SiR dyes as markers for chitin-containing taenidia, a component of tracheoles. STED microscopy revealed correlation between the taenidia periodicity and the diameter of the tracheole. Combined tubulin and taenidia STED imaging showed close interaction between the microtubules and respiratory networks in living tissues of the insect larvae."],["dc.identifier.doi","10.1039/C7SC05334G"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103579"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","2041-6539"],["dc.relation.issn","2041-6520"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc/3.0/"],["dc.title","Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","21956"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Frahm, Lars"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Alt, Philipp"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","del Álamo Ruiz, Miguel"],["dc.contributor.author","Aspelmeier, Timo"],["dc.contributor.author","Munk, Axel"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2020-12-10T18:42:02Z"],["dc.date.available","2020-12-10T18:42:02Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1364/OE.27.021956"],["dc.identifier.pmid","31510262"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16747"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77780"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/204"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","DOI-Import GROB-394"],["dc.notes.intern","Merged from goescholar"],["dc.relation","RTG 2088: Research Training Group 2088 Discovering structure in complex data: Statistics meets Optimization and Inverse Problems"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Munk"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Molecular contribution function in RESOLFT nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC