Now showing 1 - 2 of 2
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1457"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1466"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Lupo, Domenico"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Tews, Ivo"],["dc.contributor.author","Sinning, Irmgard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:24Z"],["dc.date.available","2017-09-07T11:43:24Z"],["dc.date.issued","2011"],["dc.description.abstract","Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 angstrom resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38 Delta as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01239.x"],["dc.identifier.gro","3142664"],["dc.identifier.isi","000295052500017"],["dc.identifier.pmid","21718401"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [FOR967]; Max-Planck Society"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1600-0854"],["dc.relation.issn","1398-9219"],["dc.title","Mdm38 is a 14-3-3-Like Receptor and Associates with the Protein Synthesis Machinery at the Inner Mitochondrial Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1937"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","1944"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Bauerschmitt, Heike"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Funes, Soledad"],["dc.contributor.author","Kehrein, Kirsten"],["dc.contributor.author","Ott, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Herrmann, Johannes M."],["dc.date.accessioned","2017-09-07T11:46:00Z"],["dc.date.available","2017-09-07T11:46:00Z"],["dc.date.issued","2010"],["dc.description.abstract","Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs."],["dc.identifier.doi","10.1091/mbc.E10-02-0101"],["dc.identifier.gro","3142905"],["dc.identifier.isi","000278681700003"],["dc.identifier.pmid","20427570"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7570"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/361"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Amer Soc Cell Biology"],["dc.relation.issn","1059-1524"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Ribosome-binding Proteins Mdm38 and Mba1 Display Overlapping Functions for Regulation of Mitochondrial Translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS