Now showing 1 - 5 of 5
  • 2017-12-05Journal Article
    [["dc.bibliographiccitation.firstpage","32"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","EMBO molecular medicine"],["dc.bibliographiccitation.lastpage","47"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Martinez-Hernandez, Ana"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Gillman, Alan L."],["dc.contributor.author","Lee, Joon"],["dc.contributor.author","Ryazanov, Sergey"],["dc.contributor.author","Agbemenyah, Hope Y."],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Kaurani, Lalit"],["dc.contributor.author","Grigorian, Gayane"],["dc.contributor.author","Leonov, Andrei"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Wilken, Petra"],["dc.contributor.author","Teran Arce, Fernando"],["dc.contributor.author","Wagner, Jens"],["dc.contributor.author","Fuhrman, Martin"],["dc.contributor.author","Caruana, Mario"],["dc.contributor.author","Camilleri, Angelique"],["dc.contributor.author","Vassallo, Neville"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Benz, Roland"],["dc.contributor.author","Giese, Armin"],["dc.contributor.author","Schneider, Anja"],["dc.contributor.author","Korte, Martin"],["dc.contributor.author","Lal, Ratnesh"],["dc.contributor.author","Griesinger, Christian"],["dc.contributor.author","Eichele, Gregor"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2018-01-09T14:58:18Z"],["dc.date.available","2018-01-09T14:58:18Z"],["dc.date.issued","2017-12-05"],["dc.description.abstract","Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Aβ pores without changing the membrane embedded Aβ-oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD-related pathology that should be investigated further."],["dc.identifier.doi","10.15252/emmm.201707825"],["dc.identifier.pmid","29208638"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15064"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11613"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1757-4684"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3572"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Journal of Clinical Investigation"],["dc.bibliographiccitation.lastpage","3584"],["dc.bibliographiccitation.volume","125"],["dc.contributor.author","Benito-Garagorri, Eva"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Haider, Rashi"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Navarro-Sala, Magdalena"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Schuetz, Anna-Lena"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Luehrmann, Reinhard"],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:43:34Z"],["dc.date.available","2017-09-07T11:43:34Z"],["dc.date.issued","2015"],["dc.description.abstract","Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline."],["dc.identifier.doi","10.1172/JCI79942"],["dc.identifier.gro","3141833"],["dc.identifier.isi","000362303600031"],["dc.identifier.pmid","26280576"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1579"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1558-8238"],["dc.relation.issn","0021-9738"],["dc.title","HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017-07-18Journal Article
    [["dc.bibliographiccitation.firstpage","538"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","548"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Kerimoglu, Cemil"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Sakib, M Sadman"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Benito-Garagorri, Eva"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Kaurani, Lalit"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Agis-Balboa, Roberto Carlos"],["dc.contributor.author","Stilling, Roman Manuel"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Kranz, Andrea"],["dc.contributor.author","Stewart, Adrian Francis"],["dc.date.accessioned","2018-01-09T14:45:29Z"],["dc.date.available","2018-01-09T14:45:29Z"],["dc.date.issued","2017-07-18"],["dc.description.abstract","Kmt2a and Kmt2b are H3K4 methyltransferases of the Set1/Trithorax class. We have recently shown the importance of Kmt2b for learning and memory. Here, we report that Kmt2a is also important in memory formation. We compare the decrease in H3K4 methylation and de-regulation of gene expression in hippocampal neurons of mice with knockdown of either Kmt2a or Kmt2b. Kmt2a and Kmt2b control largely distinct genomic regions and different molecular pathways linked to neuronal plasticity. Finally, we show that the decrease in H3K4 methylation resulting from Kmt2a knockdown partially recapitulates the pattern previously reported in CK-p25 mice, a model for neurodegeneration and memory impairment. Our findings point to the distinct functions of even closely related histone-modifying enzymes and provide essential insight for the development of more efficient and specific epigenetic therapies against brain diseases."],["dc.identifier.doi","10.1016/j.celrep.2017.06.072"],["dc.identifier.pmid","28723559"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11606"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","2211-1247"],["dc.title","KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017-09-26Journal Article
    [["dc.bibliographiccitation.firstpage","e1239"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Translational psychiatry"],["dc.bibliographiccitation.lastpage","e1239"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Benito, E."],["dc.contributor.author","Ramachandran, B."],["dc.contributor.author","Schroeder, H."],["dc.contributor.author","Schmidt, G."],["dc.contributor.author","Urbanke, H."],["dc.contributor.author","Burkhardt, S."],["dc.contributor.author","Capece, V."],["dc.contributor.author","Dean, C."],["dc.contributor.author","Fischer, A."],["dc.date.accessioned","2019-07-09T11:44:50Z"],["dc.date.available","2019-07-09T11:44:50Z"],["dc.date.issued","2017-09-26"],["dc.description.abstract","Histone acetylation is essential for memory formation and its deregulation contributes to the pathogenesis of Alzheimer's disease. Thus, targeting histone acetylation is discussed as a novel approach to treat dementia. The histone acetylation landscape is shaped by chromatin writer and eraser proteins, while readers link chromatin state to cellular function. Chromatin readers emerged novel drug targets in cancer research but little is known about the manipulation of readers in the adult brain. Here we tested the effect of JQ1-a small-molecule inhibitor of the chromatin readers BRD2, BRD3, BRD4 and BRDT-on brain function and show that JQ1 is able to enhance cognitive performance and long-term potentiation in wild-type animals and in a mouse model for Alzheimer's disease. Systemic administration of JQ1 elicited a hippocampal gene expression program that is associated with ion channel activity, transcription and DNA repair. Our findings suggest that JQ1 could be used as a therapy against dementia and should be further tested in the context of learning and memory."],["dc.identifier.doi","10.1038/tp.2017.202"],["dc.identifier.pmid","28949335"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14924"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59110"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/648898/EU//DEPICODE"],["dc.relation.issn","2158-3188"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","612"],["dc.title","The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1912"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","1927"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Stilling, Roman Manuel"],["dc.contributor.author","Roenicke, Raik"],["dc.contributor.author","Benito-Garagorri, Eva"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Bahari-Javan, Sanaz"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Sananbenesi, Farahnaz"],["dc.contributor.author","Schuetz, Anna L."],["dc.contributor.author","Dyczkowski, Jerzy"],["dc.contributor.author","Martinez-Hernandez, Ana"],["dc.contributor.author","Kerimoglu, Cemil"],["dc.contributor.author","Dent, Sharon Y. R."],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Reymann, Klaus G."],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:45:35Z"],["dc.date.available","2017-09-07T11:45:35Z"],["dc.date.issued","2014"],["dc.description.abstract","Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)-a HAT that has not been studied for its role in memory function so far-shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation."],["dc.identifier.doi","10.15252/embj.201487870"],["dc.identifier.gro","3142062"],["dc.identifier.isi","000341839500009"],["dc.identifier.pmid","25024434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4123"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS