Now showing 1 - 10 of 32
  • 2013Conference Abstract
    [["dc.bibliographiccitation.journal","European Biophysics Journal"],["dc.bibliographiccitation.volume","42"],["dc.contributor.author","Gleisner, M."],["dc.contributor.author","Dreker, C."],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2018-11-07T09:22:32Z"],["dc.date.available","2018-11-07T09:22:32Z"],["dc.date.issued","2013"],["dc.format.extent","S122"],["dc.identifier.isi","000330215300334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29365"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.eventlocation","Lisbon, PORTUGAL"],["dc.relation.issn","1432-1017"],["dc.relation.issn","0175-7571"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Pore spanning membranes as a model system for the selective generation of membrane curvature"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","389"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","390"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Barbot, M."],["dc.contributor.author","Jans, D. C."],["dc.contributor.author","Schulz, C."],["dc.contributor.author","Denkert, N."],["dc.contributor.author","Kroppen, B."],["dc.contributor.author","Hoppert, M."],["dc.contributor.author","Jakobs, Sebastian"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570607078"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36626"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6228"],["dc.bibliographiccitation.issue","33"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","6236"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Gleisner, Martin"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:46:54Z"],["dc.date.available","2017-09-07T11:46:54Z"],["dc.date.issued","2014"],["dc.description.abstract","The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO2 substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 mm and a pore depth of 10 mm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP2 specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer."],["dc.identifier.doi","10.1039/c4sm00702f"],["dc.identifier.fs","606035"],["dc.identifier.gro","3142206"],["dc.identifier.isi","000340438600011"],["dc.identifier.pmid","25012509"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11470"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5710"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [SFB 803]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1744-6848"],["dc.relation.issn","1744-683X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.rights.access","openAccess"],["dc.title","Driving a planar model system into the 3rd dimension: generation and control of curved pore-spanning membrane arrays"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2990"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","2996"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Santos, Antonio J. M."],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Fessler, Michael B."],["dc.contributor.author","Holden, David W."],["dc.contributor.author","Boucrot, Emmanuel"],["dc.date.accessioned","2018-11-07T09:22:22Z"],["dc.date.available","2018-11-07T09:22:22Z"],["dc.date.issued","2013"],["dc.description.abstract","Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a,20: 80 outer: inner leaflet repartition during interphase to,50: 50 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding."],["dc.identifier.doi","10.1242/jcs.115253"],["dc.identifier.isi","000321747400003"],["dc.identifier.pmid","23687374"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29328"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","0021-9533"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2126"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","2134"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Montilla-Martinez, Malayko"],["dc.contributor.author","Beck, Sabrina"],["dc.contributor.author","Kluemper, Jessica"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Schliebs, Wolfgang"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Erdmann, Ralf"],["dc.date.accessioned","2018-11-07T09:47:30Z"],["dc.date.available","2018-11-07T09:47:30Z"],["dc.date.issued","2015"],["dc.description.abstract","Two peroxisomal targeting signals, PTS1 and PTS2, recognized by cytosolic receptors Pex5 and cooperating Pex7/Pex18, direct folded proteins to the peroxisomal matrix. A pore consisting of the PTS1 receptor Pex5 and the docking protein Pex14 imports PTS1 proteins. We identified a distinct PTS2-specific pore, which contains the PTS2 co-receptor Pex18 and the Pex14/Pex17-dockingcomplex as major constituents. The estimated maximal pore size of similar to 4.7 nm is large enough to allow import of folded PTS2 proteins. PTS2 cargo proteins modulate complex gating, open probability, and subconductance states of the pore. While the PTS1 channel is transiently activated by arriving receptor-cargo complexes, the reconstituted PTS2 channel is constitutively present in an open state. However, the cargo-loaded PTS2 channel is largely impermeable to solutes and ions. Our results demonstrate that import of PTS1 and PTS2 proteins does not converge at the peroxisomal membrane as previously anticipated but is performed by distinct pores."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [FOR1905]"],["dc.identifier.doi","10.1016/j.celrep.2015.11.016"],["dc.identifier.isi","000366534300011"],["dc.identifier.pmid","26673321"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12740"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35126"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","2211-1247"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","5009"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","5021"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Krüger, Vivien"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Grunau, Silke D."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Wiedemann, Nils"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2017-09-07T11:48:21Z"],["dc.date.available","2017-09-07T11:48:21Z"],["dc.date.issued","2012"],["dc.description.abstract","The majority of multispanning inner mitochondrial membrane proteins utilize internal targeting signals, which direct them to the carrier translocase (TIM22 complex), for their import. MPV17 and its Saccharomyces cerevisiae orthologue Sym1 are multispanning inner membrane proteins of unknown function with an amino-terminal presequence that suggests they may be targeted to the mitochondria. Mutations affecting MPV17 are associated with mitochondrial DNA depletion syndrome (MDDS). Reconstitution of purified Sym1 into planar lipid bilayers and electrophysiological measurements have demonstrated that Sym1 forms a membrane pore. To address the biogenesis of Sym1, which oligomerizes in the inner mitochondrial membrane, we studied its import and assembly pathway. Sym1 forms a transport intermediate at the translocase of the outer membrane (TOM) complex. Surprisingly, Sym1 was not transported into mitochondria by an amino-terminal signal, and in contrast to what has been observed in carrier proteins, Sym1 transport and assembly into the inner membrane were independent of small translocase of mitochondrial inner membrane (TIM) and TIM22 complexes. Instead, Sym1 required the presequence of translocase for its biogenesis. Our analyses have revealed a novel transport mechanism for a polytopic membrane protein in which internal signals direct the precursor into the inner membrane via the TIM23 complex, indicating a presequence-independent function of this translocase."],["dc.identifier.doi","10.1128/MCB.00843-12"],["dc.identifier.gro","3142435"],["dc.identifier.isi","000311492200011"],["dc.identifier.pmid","23045398"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8252"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0270-7306"],["dc.title","The Channel-Forming Sym1 Protein Is Transported by the TIM23 Complex in a Presequence-Independent Manner"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1026"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Microbes and Infection"],["dc.bibliographiccitation.lastpage","1033"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Rassow, Joachim"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-11-07T09:05:18Z"],["dc.date.available","2018-11-07T09:05:18Z"],["dc.date.issued","2012"],["dc.description.abstract","The vacuolating cytotoxin VacA, a polypeptide of about 88 kDa, is one of the major virulence factors of Helicobacter pylori. VacA essentially acts as an invasive chloride channel targeting mitochondria. The results of recent studies open a new perspective on the mechanisms by which VacA causes loss of the mitochondrial membrane potential, mitochondrial fragmentation, formation of reactive oxygen species, autophagy, cell death and gastric cancer. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved."],["dc.identifier.doi","10.1016/j.micinf.2012.07.002"],["dc.identifier.isi","000309441800003"],["dc.identifier.pmid","22796385"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25284"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1286-4579"],["dc.title","Helicobacter pylori VacA: a new perspective on an invasive chloride channel"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33314"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","33326"],["dc.bibliographiccitation.volume","287"],["dc.contributor.author","Krüger, Vivien"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Hildenbeutel, Markus"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Hellmers, Maike"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Preuss, Marc"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2017-09-07T11:48:24Z"],["dc.date.available","2017-09-07T11:48:24Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner."],["dc.identifier.doi","10.1074/jbc.M112.387563"],["dc.identifier.gro","3142462"],["dc.identifier.isi","000309602100020"],["dc.identifier.pmid","22829595"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8551"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9258"],["dc.title","The Mitochondrial Oxidase Assembly Protein1 (Oxa1) Insertase Forms a Membrane Pore in Lipid Bilayers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","274"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Nature Cell Biology"],["dc.bibliographiccitation.lastpage","281"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Vasic, Vedran"],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Schmidt, Claudia C."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Stein, Alexander"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2021-04-14T08:27:11Z"],["dc.date.available","2021-04-14T08:27:11Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41556-020-0473-4"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82199"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1476-4679"],["dc.relation.issn","1465-7392"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","21"],["dc.contributor.author","Munzel, Lena"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Otto, Florian B."],["dc.contributor.author","Krick, Roswitha"],["dc.contributor.author","Metje-Sprink, Janina"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Thumm, Michael"],["dc.date.accessioned","2021-03-05T08:58:48Z"],["dc.date.available","2021-03-05T08:58:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1080/15548627.2020.1766332"],["dc.identifier.pmid","32515645"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80259"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/114"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P06: Das Zusammenspiel von Organellen-Kontaktstellen und Autophagie in S. cerevisiae"],["dc.relation.eissn","1554-8635"],["dc.relation.issn","1554-8627"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Thumm (Autophagy)"],["dc.title","Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC