Options
Dittmann, Kai
Loading...
Preferred name
Dittmann, Kai
Official Name
Dittmann, Kai
Alternative Name
Dittmann, K.
Main Affiliation
Now showing 1 - 10 of 23
2014Journal Article [["dc.bibliographiccitation.firstpage","1398"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","1411"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Schneppenheim, Janna"],["dc.contributor.author","Huettl, Susann"],["dc.contributor.author","Mentrup, Torben"],["dc.contributor.author","Luellmann-Rauch, Renate"],["dc.contributor.author","Rothaug, Michelle"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Araki, Masatake"],["dc.contributor.author","Araki, Kimi"],["dc.contributor.author","Wienands, Juergen"],["dc.contributor.author","Fluhrer, Regina"],["dc.contributor.author","Saftig, Paul"],["dc.contributor.author","Schroeder, Bernd"],["dc.date.accessioned","2018-11-07T09:42:09Z"],["dc.date.available","2018-11-07T09:42:09Z"],["dc.date.issued","2014"],["dc.description.abstract","We reported recently that the presenilin homologue signal peptide peptidase-like 2a (SPPL2a) is essential for B cell development by cleaving the N-terminal fragment (NTF) of the invariant chain (li, CD74). Based on this, we suggested that pharmacological modulation of SPPL2a may represent a novel approach to deplete B cells in autoimmune disorders. With regard to reported overlapping substrate spectra of SPPL2a and its close homologue, SPPL2b, we investigated the role of SPPL2b in CD74 NTF proteolysis and its impact on B and dendritic cell homeostasis. In heterologous expression experiments, SPPL2b was found to cleave CD74 NTF with an efficiency simliar to that of SPPL2a. For in vivo analysis, SPPL2b single-deficient and SPPL2a/SPPL2b double-deficient mice were generated and examined for CD74 NTF turnover/accumulation, B cell maturation and functionality, and dendritic cell homeostasis. We demonstrate that in vivo SPPL2b does not exhibit a physiologically relevant contribution to CD74 proteolysis in B and dendritic cells. Furthermore, we reveal that both proteases exhibit divergent subcellular localizations in B cells and different expression profiles in murine tissues. These findings suggest distinct functions of SPPL2a and SPPL2b and, based on a high abundance of SPPL2b in brain, a physiological role of this protease in the central nervous system."],["dc.identifier.doi","10.1128/MCB.00038-14"],["dc.identifier.isi","000333338600003"],["dc.identifier.pmid","24492962"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33889"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Microbiology"],["dc.relation.issn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.title","The Intramembrane Proteases Signal Peptide Peptidase-Like 2a and 2b Have Distinct Functions In Vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article [["dc.bibliographiccitation.firstpage","1587"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cancer Immunology Immunotherapy"],["dc.bibliographiccitation.lastpage","1597"],["dc.bibliographiccitation.volume","62"],["dc.contributor.author","Koenig, Simone"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Wienands, Juergen"],["dc.contributor.author","Schwendener, Reto"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T09:19:32Z"],["dc.date.available","2018-11-07T09:19:32Z"],["dc.date.issued","2013"],["dc.description.abstract","Liposomes are frequently used in cancer therapy to encapsulate and apply anticancer drugs. Here, we show that a systemic treatment of mice bearing skin tumors with empty phosphatidylcholine liposomes (PCL) resulted in inhibition of tumor growth, which was similar to that observed with the synthetic bacterial lipoprotein and TLR1/2 agonist Pam(3)CSK(4) (BLP). Both compounds led to a substantial decrease of macrophages in spleen and in the tumor-bearing skin. Furthermore, both treatments induced the expression of typical macrophage markers in the tumor-bearing tissue. As expected, BLP induced the expression of the M1 marker genes Cxcl10 and iNOS, whereas PCL, besides inducing iNOS, also increased the M2 marker genes Arg1 and Trem2. In vitro experiments demonstrated that neither PCL nor BLP influenced proliferation or survival of tumor cells, whereas both compounds inhibited proliferation and survival and increased the migratory capacity of bone marrow-derived macrophages (BMDM). However, in contrast to BLP, PCL did not activate cytokine secretion and induced a different BMDM phenotype. Together, the data suggest that similar to BLP, PCL induce an antitumor response by influencing the tumor microenvironment, in particular by functional alterations of macrophages, however, in a distinct manner from those induced by BLP."],["dc.description.sponsorship","DFG [FOR942 HA 2197/5-2]"],["dc.identifier.doi","10.1007/s00262-013-1444-4"],["dc.identifier.isi","000325008800005"],["dc.identifier.pmid","23917775"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28662"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0340-7004"],["dc.title","Empty liposomes induce antitumoral effects associated with macrophage responses distinct from those of the TLR1/2 agonist Pam(3)CSK(4) (BLP)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","5354"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","The journal of immunology"],["dc.bibliographiccitation.lastpage","5358"],["dc.bibliographiccitation.volume","191"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Oellerich, Thomas"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Hsiao, He-Hsuan"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Serve, Hubert"],["dc.contributor.author","Griesinger, Christian"],["dc.contributor.author","Wienands, JĂĽrgen"],["dc.date.accessioned","2017-09-07T11:47:02Z"],["dc.date.available","2017-09-07T11:47:02Z"],["dc.date.issued","2013"],["dc.description.abstract","Ag-mediated B cell stimulation relies on phospholipase C gamma 2 (PLC gamma 2) for Ca2+ mobilization. Enzymatic activity of PLC gamma 2 is triggered upon Src homology 2 domain-mediated binding to the tyrosine-phosphorylated adaptor SLP65. However, SLP65 phosphorylation outlasts the elevation of cytosolic Ca2+ concentration suggesting additional levels of PLC gamma 2 regulation. We show in this article that the functionality of the PLC gamma 2/SLP65 complex is controlled by the weakly characterized C2 domain of PLC gamma 2. Usually C2 domains bind membrane lipids, but that of PLC gamma 2 docks in a Ca2+-regulated manner to a distinct phosphotyrosine of SLP65. Hence, early Ca2+ fluxing provides feed-forward signal amplification by promoting anchoring of the PLC gamma 2 C2 domain to phospho-SLP65. As the cellular Ca2+ resources become exhausted, the concomitant decline of Ca2+ dampens the C2-phosphotyrosine interaction so that PLC gamma 2 activation terminates despite sustained SLP65 phosphorylation."],["dc.identifier.doi","10.4049/jimmunol.1301326"],["dc.identifier.gro","3142245"],["dc.identifier.isi","000327180600005"],["dc.identifier.pmid","24166973"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6143"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [SFB 860, B5]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Amer Assoc Immunologists"],["dc.relation.eissn","1550-6606"],["dc.relation.issn","0022-1767"],["dc.title","Cutting Edge: Feed-Forward Activation of Phospholipase C gamma 2 via C2 Domain-Mediated Binding to SLP65"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.artnumber","e93555"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Koenig, Simone"],["dc.contributor.author","Nitzki, Frauke"],["dc.contributor.author","Uhmann, Anja"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Theiss-Suennemann, Jennifer"],["dc.contributor.author","Herrmann, Markus"],["dc.contributor.author","Reichardt, Holger Michael"],["dc.contributor.author","Schwendener, Reto"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T09:41:53Z"],["dc.date.available","2018-11-07T09:41:53Z"],["dc.date.issued","2014"],["dc.description.abstract","Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [FOR942 HA 2197/5-2]"],["dc.identifier.doi","10.1371/journal.pone.0093555"],["dc.identifier.isi","000334101100104"],["dc.identifier.pmid","24691432"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10067"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33833"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Depletion of Cutaneous Macrophages and Dendritic Cells Promotes Growth of Basal Cell Carcinoma in Mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Journal Article Discussion [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","The Journal of Immunology"],["dc.bibliographiccitation.volume","183"],["dc.contributor.author","Uhmann, Anja"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Wienands, Juergen"],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T11:25:03Z"],["dc.date.available","2018-11-07T11:25:03Z"],["dc.date.issued","2009"],["dc.format.extent","2891"],["dc.identifier.doi","10.4049/jimmunol.0990063"],["dc.identifier.isi","000269391400001"],["dc.identifier.pmid","19696426"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/56544"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Assoc Immunologists"],["dc.relation.issn","0022-1767"],["dc.title","Comment on \"Direct Hematological Toxicity and Illegitimate Chromosomal Recombination Caused by the Systemic Activation of CreER(T2)\""],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","3259"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","3273"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Draeger, Julia"],["dc.contributor.author","Simon-Keller, Katja"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Klemm, Florian"],["dc.contributor.author","Wilting, Joerg"],["dc.contributor.author","Sticht, Carsten"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Schulz, Matthias"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Marx, Alexander"],["dc.contributor.author","Hahn, Heidi"],["dc.date.accessioned","2018-11-07T10:28:26Z"],["dc.date.available","2018-11-07T10:28:26Z"],["dc.date.issued","2017"],["dc.description.abstract","Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas beta-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.18632/oncotarget.13887"],["dc.identifier.isi","000391506300114"],["dc.identifier.pmid","27965462"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43418"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2003Journal Article [["dc.bibliographiccitation.firstpage","801"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","International Journal of Radiation Biology"],["dc.bibliographiccitation.lastpage","808"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Dittmann, K."],["dc.contributor.author","Virsik-Koepp, Patricia"],["dc.contributor.author","Mayer, C."],["dc.contributor.author","Rave-Fraenk, Margret"],["dc.contributor.author","Rodemann, H. P."],["dc.date.accessioned","2018-11-07T10:35:48Z"],["dc.date.available","2018-11-07T10:35:48Z"],["dc.date.issued","2003"],["dc.description.abstract","Purpose: To test a stimulatory effect of the radioprotector Bowman Birk protease inhibitor (BBI) upon DNA repair processes. Materials and methods: An effect of BBI upon DNA repair was investigated by quantification of radiation-induced dicentric chromosomes. Sensitivity to ionizing radiation was determined by clonogenic survival assay. Quantification of activity of the DNA-dependent kinase was performed by immunoprecipitation and phosphorylation of a TP53-derived peptide. Results: The formation of radiation-induced dicentric chromosomes was reduced significantly after pretreatment of cells with BBI. By using a cell line with an inducible expression of a mutated TP53, it was shown that the BBI-mediated reduction of dicentric chromosome formation depended on the presence of wild-type TP53. To get further insights into the molecular mode of action of BBI, activity of the DNA-dependent protein kinase (DNA-PK) was quantified. BBI treatment resulted in a stimulation of basal (DNA-PK) activity. In SCID mouse fibroblasts deficient in DNA-PK activity, BBI failed to reduce the amount of radiation-induced dicentric chromosomes and the radioprotective effect was absent. Likewise, cells expressing mt.TP53 did not show radioprotection by BBI. Conclusions : It was observed that BBI exerts its radioprotective effect by a reduction of incorrect DNA repair, resulting in a reduced amount of dicentric chromosomes. This effect on the fidelity of DNA repair is TP53 dependent and correlated with induction of DNA-PK activity."],["dc.identifier.doi","10.1080/09553000310001610277"],["dc.identifier.isi","000186683400005"],["dc.identifier.pmid","14630539"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/45177"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Taylor & Francis Ltd"],["dc.relation.issn","0955-3002"],["dc.title","Bowman-Birk protease inhibitor activates DNA-dependent protein kinase and reduces formation of radiation-induced dicentric chromosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article [["dc.bibliographiccitation.firstpage","19614"],["dc.bibliographiccitation.issue","32"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","19628"],["dc.bibliographiccitation.volume","290"],["dc.contributor.author","Linder, Benedikt"],["dc.contributor.author","Weber, Susanne"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Adamski, Jerzy"],["dc.contributor.author","Hahn, Heidi"],["dc.contributor.author","Uhmann, Anja"],["dc.date.accessioned","2018-11-07T09:53:20Z"],["dc.date.available","2018-11-07T09:53:20Z"],["dc.date.issued","2015"],["dc.description.abstract","The Patched1 (Ptch)-mediated inhibition of Smoothened (Smo) is still an open question. However, a direct Ptch/Smo interaction has been excluded, Smo modulators were identified, but the endogenous signal transmitting molecule remains undiscovered. Here, we demonstrate that calcitriol, the hormonally active form of vitamin D-3, is an excellent candidate for transmission of Ptch/Smo interaction. Our study reveals that Ptch expression is sufficient to release calcitriol from the cell and that calcitriol inhibits Smo action and ciliary translocation by acting on a site distinct from the 7-transmembrane domain or the cysteine-rich domain. Moreover calcitriol strongly synergizes with itraconazole (ITZ) in Smo inhibition, which did not result from elevated calcitriol bioavailability due to ITZ-mediated 24-hydroxylase inhibition but rather from a direct interaction of the compounds at the level of Smo. Together, we suggest that calcitriol represents a possible endogenous transmitter of Ptch/Smo interaction. Moreover calcitriol or calcitriol derivatives combined with ITZ might be a treatment option of Hedgehog-associated cancers."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [UH 228/2-1, UH228/2-2]"],["dc.identifier.doi","10.1074/jbc.M115.646141"],["dc.identifier.isi","000359364600023"],["dc.identifier.pmid","26126827"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36311"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.title","A Functional and Putative Physiological Role of Calcitriol in Patched1/Smoothened Interaction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article [["dc.bibliographiccitation.firstpage","652"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","American Journal of Medical Genetics Part A"],["dc.bibliographiccitation.lastpage","658"],["dc.bibliographiccitation.volume","158A"],["dc.contributor.author","Pauli, Silke"],["dc.contributor.author","Steinemann, Doris"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Wienands, Juergen"],["dc.contributor.author","Shoukier, Moneef"],["dc.contributor.author","Moeschner, Marita"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Manukjan, Georgi"],["dc.contributor.author","Goehring, Gudrun"],["dc.contributor.author","Escherich, Gabriele"],["dc.date.accessioned","2018-11-07T09:12:38Z"],["dc.date.available","2018-11-07T09:12:38Z"],["dc.date.issued","2012"],["dc.description.abstract","Noonan syndrome (NS) is a common autosomal dominant condition characterized by short stature, congenital heart defects, and dysmorphic facial features caused in approximately 50% of cases by missense mutations in the PTPN11 gene. NS patients are predisposed to malignancies including myeloproliferative disorders or leukemias. We report a female NS patient carrying a PTPN11 germline mutation c.417 G?>?C (p.E139D), who developed in her second year of life an acute lymphoblastic leukemia (ALL) and after remission, she developed at 4 years of age a juvenile myelomonocytic leukemia (JMML). Molecular genetic analysis of lymphoblastic blasts at the time of the ALL diagnosis revealed the germline mutation in a heterozygous state, while in the myelomonocytic blasts occurring with JMML diagnosis, the mutation p.E139D was found in a homozygous state due to a uniparental disomy (UPD). These findings lead to the suggestion that the pathogenesis of ALL and JMML in our patient is due to different mechanisms including somatically acquired secondary chromosomal abnormalities. (c) 2012 Wiley Periodicals, Inc."],["dc.identifier.doi","10.1002/ajmg.a.34439"],["dc.identifier.isi","000300498500028"],["dc.identifier.pmid","22315187"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26985"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1552-4825"],["dc.title","Occurrence of acute lymphoblastic leukemia and juvenile myelomonocytic leukemia in a patient with Noonan syndrome carrying the germline PTPN11 mutation p.E139D"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Review [["dc.bibliographiccitation.firstpage","235"],["dc.bibliographiccitation.journal","Immunological Reviews"],["dc.bibliographiccitation.lastpage","246"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Engels, Niklas"],["dc.contributor.author","Dittmann, Kai"],["dc.contributor.author","Stork, Bjorn"],["dc.contributor.author","Wienands, Juergen"],["dc.date.accessioned","2018-11-07T11:00:05Z"],["dc.date.available","2018-11-07T11:00:05Z"],["dc.date.issued","2007"],["dc.description.abstract","B cells respond to antigen stimulation with mobilization of the Ca2+ second messenger in two phases operated by two distinct sets of effector proteins. First, an antigen receptor-specific Ca2+ initiation complex is assembled, activated, and targeted to the plasma membrane to trigger the transient release of Ca2+ from intracellular stores of the endoplasmic reticulum. Second, more ubiquitously expressed Ca2+ channels of the plasma membrane are opened to allow for sustained Ca2+ influx from the extracellular medium. Depending on the developmental stage of the B cell, the kinetics and profile of the two phases are adjusted at multiple levels of positive and negative regulation. A molecular basis for the Ca2+ signaling plasticity is provided by cytosolic and transmembrane adapter proteins. They act as signal organizers, which control enzyme/substrate interactions by directing the different signaling modules into specific subcellular compartments. These arrangements orchestrate a graduated activation of Ca2+-sensitive downstream pathways, which ultimately determine appropriate cellular responses, namely elimination of autoreactive B cells or proliferation and differentiation of immunocompetent B cells into antibody-secreting plasma cells."],["dc.identifier.doi","10.1111/j.1600-065X.2007.00539.x"],["dc.identifier.isi","000247924700017"],["dc.identifier.pmid","17624956"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50851"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0105-2896"],["dc.title","Ca2+ signaling in antigen receptor-activated B lymphocytes"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS