Options
Sidenstein, Sven C.
Loading...
Preferred name
Sidenstein, Sven C.
Official Name
Sidenstein, Sven C.
Alternative Name
Sidenstein, S. C.
Now showing 1 - 6 of 6
2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3290"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","3294"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Mitronova, Gyuzel Yu"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Klocke, Jessica L."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Meineke, Dirk N. H."],["dc.contributor.author","D'Este, E."],["dc.contributor.author","Kraemer, Philip-Tobias"],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:54:38Z"],["dc.date.available","2017-09-07T11:54:38Z"],["dc.date.issued","2016"],["dc.description.abstract","A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of =500-630nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1m solutions of the dye-ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure-property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one- and two-color images of living cells with an optical resolution of 40-60nm."],["dc.identifier.doi","10.1002/anie.201511018"],["dc.identifier.gro","3141724"],["dc.identifier.isi","000371418200008"],["dc.identifier.pmid","26844929"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/369"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1521-3773"],["dc.relation.issn","1433-7851"],["dc.title","Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-04-23T11:48:22Z"],["dc.date.available","2018-04-23T11:48:22Z"],["dc.date.issued","2018"],["dc.description.abstract","The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT nanoscopy have been developed from fluorescent proteins of the GFP superfamily. These proteins are bright, but exhibit several drawbacks such as relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching speed. Therefore, RSFPs from other origins with improved properties need to be explored. Here, we report the development of two RSFPs based on the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. LOV domains obtain their fluorescence by association with the abundant cellular cofactor flavin mononucleotide (FMN). Under illumination with blue and ultraviolet light, they undergo a photocycle, making these proteins inherently photoswitchable. Our first improved variant, rsLOV1, can be used for RESOLFT imaging, whereas rsLOV2 proved useful for STED nanoscopy of living cells with a resolution of down to 50 nm. In addition to their smaller size compared to GFP-related proteins (17 kDa instead of 27 kDa) and their usability at low pH, rsLOV1 and rsLOV2 exhibit faster switching kinetics, switching on and off 3 times faster than rsEGFP2, the fastest-switching RSFP reported to date. Therefore, LOV-domain-based RSFPs have potential for applications where the switching speed of GFP-based proteins is limiting."],["dc.identifier.doi","10.1038/s41598-018-19947-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13496"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.issn","2045-2322"],["dc.title","Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","122"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Nature Photonics"],["dc.bibliographiccitation.lastpage","128"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:54:41Z"],["dc.date.available","2017-09-07T11:54:41Z"],["dc.date.issued","2016"],["dc.description.abstract","Far-field super-resolution fluorescence microscopy discerns fluorophores residing closer than the diffraction barrier by briefly transferring them in different (typically ON and OFF) states before detection. In coordinate-targeted super-resolution variants, such as stimulated emission depletion (STED) microscopy, this state difference is created by the intensity minima and maxima of an optical pattern, causing all fluorophores to assume the off state, for instance, except at the minima. Although strong spatial confinement of the on state enables high resolution, it also subjects the fluorophores to excess intensities and state cycles at the maxima. Here, we address these issues by driving the fluorophores into a second off state that is inert to the excess light. By using reversibly switchable fluorescent proteins as labels, our approach reduces bleaching and enhances resolution and contrast in live-cell STED microscopy. Using two or more transitions to off states is a useful strategy for augmenting the power of coordinate-targeted super-resolution microscopy."],["dc.identifier.doi","10.1038/NPHOTON.2015.266"],["dc.identifier.gro","3141737"],["dc.identifier.isi","000369321400015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/513"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: European Union [PIEF-GA-2011-299283]; Korber Foundation"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1749-4893"],["dc.relation.issn","1749-4885"],["dc.title","Coordinate-targeted fluorescence nanoscopy with multiple off states"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI WOS2017-09-07Journal Article [["dc.bibliographiccitation.firstpage","12114"],["dc.bibliographiccitation.issue","50"],["dc.bibliographiccitation.journal","Chemistry - A European Journal"],["dc.bibliographiccitation.lastpage","12119"],["dc.bibliographiccitation.volume","23"],["dc.bibliographiccitation.volumetitle","Special Issue Celebrating the 150th Anniversary of the Gesellschaft Deutscher Chemiker (German Chemical Society)"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Kolmakov, Kirill"],["dc.contributor.author","Sokolov, Viktor V."],["dc.contributor.author","Shojaei, Heydar"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Matthias, Jessica"],["dc.contributor.author","Vlijm, Rifka"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:35:49Z"],["dc.date.available","2018-01-17T13:35:49Z"],["dc.date.issued","2017-09-07"],["dc.description.abstract","Hydroxylated rhodamines, carbopyronines, silico- and germanorhodamines with absorption maxima in the range of 530-640 nm were prepared and applied in specific labeling of living cells. The direct and high-yielding entry to germa- and silaxanthones tolerates the presence of protected heteroatoms and may be considered for the syntheses of various sila- and germafluoresceins, as well as -rhodols. Application in stimulated emission depletion (STED) fluorescence microscopy revealed a resolution of 50-75 nm in one- and two-color imaging of vimentin-HaloTag fused protein and native tubulin. The established structure-property relationships allow for prediction of the spectral properties and the positions of spirolactone/zwitterion equilibria for the new analogues of rhodamines, carbo-, silico-, and germanorhodamines using simple additive schemes."],["dc.identifier.doi","10.1002/chem.201701216"],["dc.identifier.pmid","28370443"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11722"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1521-3765"],["dc.title","Hydroxylated Fluorescent Dyes for Live-Cell Labeling: Synthesis, Spectra and Super-Resolution STED Microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.firstpage","186a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","187a"],["dc.bibliographiccitation.volume","112"],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Sidenstein, Sven"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Urban, Nicolai"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2022-03-01T11:44:58Z"],["dc.date.available","2022-03-01T11:44:58Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.bpj.2016.11.1034"],["dc.identifier.pii","S0006349516320641"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103178"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Coordinate-Targeted Fluorescence Nanoscopy with Multiple Off-States"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.artnumber","26725"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Böhm, Marvin J."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:44:54Z"],["dc.date.available","2017-09-07T11:44:54Z"],["dc.date.issued","2016"],["dc.description.abstract","Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels (\"multilevelSTED\") optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to similar to 35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications."],["dc.identifier.doi","10.1038/srep26725"],["dc.identifier.gro","3141682"],["dc.identifier.isi","000376500200002"],["dc.identifier.pmid","27220554"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13375"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8850"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2045-2322"],["dc.rights.access","openAccess"],["dc.title","Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS