Now showing 1 - 10 of 12
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","1243"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Molecular Biology and Evolution"],["dc.bibliographiccitation.lastpage","1258"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Maxeiner, Stephan"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Krasteva-Christ, Gabriela"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Südhof, Thomas C"],["dc.contributor.editor","Nowick, Katja"],["dc.date.accessioned","2022-03-01T11:46:46Z"],["dc.date.available","2022-03-01T11:46:46Z"],["dc.date.issued","2020"],["dc.description.abstract","Abstract Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. Although human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologs. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared with neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infraorder myomorpha and are additionally associated with dramatic changes in noncoding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function."],["dc.description.abstract","Abstract Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. Although human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologs. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared with neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infraorder myomorpha and are additionally associated with dramatic changes in noncoding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function."],["dc.identifier.doi","10.1093/molbev/msaa014"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103791"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1537-1719"],["dc.relation.issn","0737-4038"],["dc.title","Evolution of the Autism-Associated Neuroligin-4 Gene Reveals Broad Erosion of Pseudoautosomal Regions in Rodents"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","879"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Archives of General Psychiatry"],["dc.bibliographiccitation.lastpage","888"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Malzahn, Dörte"],["dc.contributor.author","Krampe, Henning"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Schwerdtfeger, Dayana"],["dc.contributor.author","Thanhäuser, Ivonne"],["dc.contributor.author","Gerchen, Martin Fungisai"],["dc.contributor.author","Ghorbani, Mohammed"],["dc.contributor.author","Gutwinski, Stefan"],["dc.contributor.author","Hilmes, Constanze"],["dc.contributor.author","Leppert, Richard"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Sowislo, Julia"],["dc.contributor.author","Stawicki, Sabina"],["dc.contributor.author","Stödtke, Maren"],["dc.contributor.author","Szuszies, Christoph"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Eckstein, Fritz"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bickeböller, Heike"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:57Z"],["dc.date.available","2017-09-07T11:46:57Z"],["dc.date.issued","2010"],["dc.description.abstract","Context: Schizophrenia is the collective term for a heterogeneous group of mental disorders with a still obscure biological basis. In particular, the specific contribution of risk or candidate gene variants to the complex schizophrenic phenotype is largely unknown. Objective: To prepare the ground for a novel “phenomics” approach, a unique schizophrenia patient database was established by GRAS (Göttingen Research Association for Schizophrenia), designed to allow association of genetic information with quantifiable phenotypes. Because synaptic dysfunction plays a key role in schizophrenia, the complexin 2 gene (CPLX2) was examined in the first phenotype-based genetic association study (PGAS) of GRAS. Design: Subsequent to a classic case-control approach, we analyzed the contribution of CPLX2 polymorphisms to discrete cognitive domains within the schizophrenic population. To gain mechanistic insight into how certain CPLX2 variants influence gene expression and function, peripheral blood mononuclear cells of patients, Cplxnull mutantmice, and transfected cells were investigated.Setting: Coordinating research center (Max Planck Institute of Experimental Medicine) and 23 collaboratingpsychiatric centers all over Germany.Participants: One thousand seventy-one patients with schizophrenia (DSM-IV) examined by an invariant investigator team, resulting in the GRAS database with more than 3000 phenotypic data points per patient, and 1079 healthy control subjects of comparable ethnicity.Main Outcome Measure: Cognitive performance including executive functioning, reasoning, and verbal learning/memory. Results: Six single-nucleotide polymorphisms, distributed over the whole CPLX2 gene, were found to be highly associated with current cognition of schizophrenic subjects but only marginally with premorbid intelligence. Correspondingly, in Cplx2-null mutant mice, prominent cognitive loss of function was obtained only in combination with a minor brain lesion applied during puberty, modeling a clinically relevant environmental risk (“second hit”) for schizophrenia. In the human CPLX2 gene, 1 of the identified 6 cognition-relevant single-nucleotide polymorphisms, rs3822674 in the 3´ untranslated region, was detected to influence microRNA-498 binding and gene expression. The same marker was associated with differential expression of CPLX2 in peripheral blood mononuclear cells. Conclusions: The PGAS allows identification of markerassociated clinical/biological traits. Current cognitive performance in schizophrenic patients is modified by CPLX2 variants modulating posttranscriptional gene expression"],["dc.identifier.doi","10.1001/archgenpsychiatry.2010.107"],["dc.identifier.fs","577608"],["dc.identifier.gro","3150567"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6097"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7343"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","final"],["dc.rights.access","closedAccess"],["dc.subject","Schizophrenia"],["dc.subject.ddc","610"],["dc.title","Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 1997Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","143"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","European Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","149"],["dc.bibliographiccitation.volume","74"],["dc.contributor.author","Telemenakis, I."],["dc.contributor.author","Benseler, F."],["dc.contributor.author","Stenius, K."],["dc.contributor.author","Südhof, T. C."],["dc.contributor.author","Brose, N."],["dc.date.accessioned","2017-09-07T11:48:15Z"],["dc.date.available","2017-09-07T11:48:15Z"],["dc.date.issued","1997"],["dc.description.abstract","Mutations in the Saccharomyces cerevisiae sec7 locus lead to a pleiotropic secretory phenotype that is characterized by an accumulation of Golgi cisternae and a loss of secretory granules, This indicates that the corresponding gene product sec7p is involved in the budding of secretory granules from the Golgi apparatus, Here we report the primary structure of three rat homologues of sec7p, called msec7-1, -2, and -3. The mRNAs of these genes are expressed in all tissues tested. All msec7s share the same domain structure in which an N-terminal coiled-coil domain is followed by a sec7-homology domain and a pleckstrin-homology domain, On the protein level, msec7s are present in all rat tissues tested, with highest protein levels in brain and adrenal, In the adult rat brain, they are present in soluble and membrane-associated pools."],["dc.identifier.gro","3144588"],["dc.identifier.isi","A1997YA32600004"],["dc.identifier.pmid","9352219"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2228"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0171-9335"],["dc.title","Rat homologues of yeast sec7p"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","340"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","American Journal of Medical Genetics Part B: Neuropsychiatric Genetics"],["dc.bibliographiccitation.lastpage","345"],["dc.bibliographiccitation.volume","156B"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Rosenberger, Albert"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Schwab, Markus H."],["dc.contributor.author","Jahn, Henriette"],["dc.contributor.author","Gunkel, Stefan"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:36Z"],["dc.date.available","2017-09-07T11:46:36Z"],["dc.date.issued","2011"],["dc.description.abstract","By pure endpoint diagnosis of the disease, the risk of developing schizophrenia has been repeatedly associated with specific variants of the neuregulin1 (NRG1) gene. However, the role of NRG1 in the etiology of schizophrenia has remained unclear. Since Nrg1 serves vital functions in early brain development of mice, we hypothesized that human NRG1 alleles codetermine developmentally influenced readouts of the disease: age of onset and positive symptom severity. We analyzed 1,071 comprehensively phenotyped schizophrenic/schizoaffective patients, diagnosed according to DSM-IV-TR, from the GRAS (Göttingen Research Association for Schizophrenia) Data Collection for genetic variability in the Icelandic region of risk in the NRG1 gene. For the case-control analysis part of the study, we included 1,056 healthy individuals with comparable ethnicity. The phenotype-based genetic association study (PGAS) was performed on the GRAS sample. Instead of a risk constellation, we detected that several haplotypic variants of NRG1 were, unexpectedly, less frequent in the schizophrenic than in the control sample (mean OR=0.78, range between 0.68 and 0.85). In the PGAS we found that these \"protective\" NRG1 variants are specifically underrepresented in subgroups of schizophrenic subjects with early age of onset and high positive symptom load. The GRAS Data Collection as a prerequisite for PGAS has enabled us to associate protective NRG1 genotypes with later onset and milder course of schizophrenia."],["dc.identifier.doi","10.1002/ajmg.b.31168"],["dc.identifier.gro","3150547"],["dc.identifier.pmid","21234898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7321"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","A phenotype-based genetic association study reveals the contribution of neuregulin1 gene variants to age of onset and positive symptom severity in schizophrenia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","309"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.lastpage","319"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Gerchen, Martin F."],["dc.contributor.author","Adamcio, Bartosz"],["dc.contributor.author","Pardo, Luis A."],["dc.contributor.author","Martin, Sabine"],["dc.contributor.author","Malzahn, Dörthe"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Radyushkin, Konstantin A."],["dc.contributor.author","Müller, Michael"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bickeböller, Heike"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Stühmer, Walter"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:44:13Z"],["dc.date.available","2017-09-07T11:44:13Z"],["dc.date.issued","2011"],["dc.description.abstract","KCNN3, encoding the small conductance calcium-activated potassium channel SK3, harbours a polymorphic CAG repeat in the amino-terminal coding region with yet unproven function. Hypothesizing that KCNN3 genotypes do not influence susceptibility to schizophrenia but modify its phenotype, we explored their contribution to specific schizophrenic symptoms. Using the Gottingen Research Association for Schizophrenia (GRAS) data collection of schizophrenic patients (n=1074), we performed a phenotype-based genetic association study (PGAS) of KCNN3. We show that long CAG repeats in the schizophrenic sample are specifically associated with better performance in higher cognitive tasks, comprising the capacity to discriminate, select and execute (p<0.0001). Long repeats reduce SK3 channel function, as we demonstrate by patch-clamping of transfected HEK293 cells. In contrast, modelling the opposite in mice, i.e. KCNN3 overexpression/channel hyperfunction, leads to selective deficits in higher brain functions comparable to those influenced by SK3 conductance in humans. To conclude, KCNN3 genotypes modify cognitive performance, shown here in a large sample of schizophrenic patients. Reduction of SK3 function may constitute a pharmacological target to improve cognition in schizophrenia and other conditions with cognitive impairment."],["dc.identifier.doi","10.1002/emmm.201100135"],["dc.identifier.gro","3142723"],["dc.identifier.isi","000292277600003"],["dc.identifier.pmid","21433290"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8179"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/159"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1757-4676"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1565"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.lastpage","1579"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Stepniak, Beata"],["dc.contributor.author","Kastner, Anne"],["dc.contributor.author","Poggi, Giulia"],["dc.contributor.author","Mitjans, Marina"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Hartmann, Annette M."],["dc.contributor.author","Van der Auwera, Sandra"],["dc.contributor.author","Sananbenesi, Farahnaz"],["dc.contributor.author","Krueger-Burg, Dilja"],["dc.contributor.author","Matuszko, Gabriela"],["dc.contributor.author","Brosi, Cornelia"],["dc.contributor.author","Homuth, Georg"],["dc.contributor.author","Völzke, H."],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Bagni, Claudia"],["dc.contributor.author","Fischer, Utz"],["dc.contributor.author","Dityatev, Alexander"],["dc.contributor.author","Grabe, Hans-Jörgen"],["dc.contributor.author","Rujescu, Dan"],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:54:49Z"],["dc.date.available","2017-09-07T11:54:49Z"],["dc.date.issued","2015"],["dc.description.abstract","Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high-versus low-risk constellation regarding the accumulation model. Thereby, the brain-expressed miR-181 species emerged as potential \"umbrella regulator\", with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes."],["dc.identifier.doi","10.15252/emmm.201505696"],["dc.identifier.gro","3141771"],["dc.identifier.isi","000368135400005"],["dc.identifier.pmid","26612855"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12871"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/890"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1757-4684"],["dc.relation.issn","1757-4676"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Conference Abstract
    [["dc.bibliographiccitation.firstpage","337"],["dc.bibliographiccitation.issue","2-3"],["dc.bibliographiccitation.journal","Schizophrenia Research"],["dc.bibliographiccitation.lastpage","338"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Klaus, Sabrina"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Malzahn, Doerthe"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Radyushkin, Konstantin A."],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bickeboeller, Heike"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2018-11-07T08:44:54Z"],["dc.date.available","2018-11-07T08:44:54Z"],["dc.date.issued","2010"],["dc.identifier.isi","000276936800585"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/20301"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation.eventlocation","Florence, ITALY"],["dc.relation.issn","0920-9964"],["dc.title","Complexin2 Gene Polymorphisms Modify Cognitive Performance in Schizophrenia"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","5704"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Molecular Biology and Evolution"],["dc.bibliographiccitation.lastpage","5725"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Gettings, Sean M."],["dc.contributor.author","Maxeiner, Stephan"],["dc.contributor.author","Tzika, Maria"],["dc.contributor.author","Cobain, Matthew R. D."],["dc.contributor.author","Ruf, Irina"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Krasteva-Christ, Gabriela"],["dc.contributor.author","Vande Velde, Greetje"],["dc.contributor.author","Schönberger, Matthias"],["dc.contributor.editor","Yeager, Meredith"],["dc.date.accessioned","2022-03-01T11:46:46Z"],["dc.date.available","2022-03-01T11:46:46Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in tetrapod vertebrates. There are four ENaC subunits (α, β, γ, δ), forming heterotrimeric αβγ- or δβγ-ENaCs. Although the physiology of αβγ-ENaC is well understood, for decades the field has stalled with respect to δβγ-ENaC due to the lack of mammalian model organisms. The SCNN1D gene coding for δ-ENaC was previously believed to be absent in rodents, hindering studies using standard laboratory animals. We analyzed all currently available rodent genomes and discovered that SCNN1D is present in rodents but was independently lost in five rodent lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not provide a selection pressure for maintenance of SCNN1D across Rodentia. A fusion of two exons coding for a structurally flexible region in the extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This conserved pattern evolved at least 41 Ma and represents a new autapomorphic feature for this clade. Exon fusion does not impair functionality of guinea pig (Cavia porcellus) δβγ-ENaC expressed in Xenopus oocytes. Electrophysiological characterization at the whole-cell and single-channel level revealed conserved biophysical features and mechanisms controlling guinea pig αβγ- and δβγ-ENaC function as compared with human orthologs. Guinea pigs therefore represent commercially available mammalian model animals that will help shed light on the physiological function of δ-ENaC."],["dc.description.abstract","Abstract The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in tetrapod vertebrates. There are four ENaC subunits (α, β, γ, δ), forming heterotrimeric αβγ- or δβγ-ENaCs. Although the physiology of αβγ-ENaC is well understood, for decades the field has stalled with respect to δβγ-ENaC due to the lack of mammalian model organisms. The SCNN1D gene coding for δ-ENaC was previously believed to be absent in rodents, hindering studies using standard laboratory animals. We analyzed all currently available rodent genomes and discovered that SCNN1D is present in rodents but was independently lost in five rodent lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not provide a selection pressure for maintenance of SCNN1D across Rodentia. A fusion of two exons coding for a structurally flexible region in the extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This conserved pattern evolved at least 41 Ma and represents a new autapomorphic feature for this clade. Exon fusion does not impair functionality of guinea pig (Cavia porcellus) δβγ-ENaC expressed in Xenopus oocytes. Electrophysiological characterization at the whole-cell and single-channel level revealed conserved biophysical features and mechanisms controlling guinea pig αβγ- and δβγ-ENaC function as compared with human orthologs. Guinea pigs therefore represent commercially available mammalian model animals that will help shed light on the physiological function of δ-ENaC."],["dc.identifier.doi","10.1093/molbev/msab271"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103794"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1537-1719"],["dc.title","Two Functional Epithelial Sodium Channel Isoforms Are Present in Rodents despite Pronounced Evolutionary Pseudogenization and Exon Fusion"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","337"],["dc.bibliographiccitation.issue","2-3"],["dc.bibliographiccitation.journal","Schizophrenia Research"],["dc.bibliographiccitation.lastpage","338"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Klaus, Sabrina"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Malzahn, Dörthe"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2022-03-01T11:45:23Z"],["dc.date.available","2022-03-01T11:45:23Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1016/j.schres.2010.02.583"],["dc.identifier.pii","S0920996410006687"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103308"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0920-9964"],["dc.title","Complexin2 Gene Polymorphisms Modify Cognitive Performance in Schizophrenia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Molecular Neuroscience"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Maxeiner, Stephan"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Krasteva-Christ, Gabriela"],["dc.date.accessioned","2022-05-02T08:09:32Z"],["dc.date.available","2022-05-02T08:09:32Z"],["dc.date.issued","2022"],["dc.description.abstract","The neural cell adhesion protein neuroligin-4 has puzzled neuroscientists and geneticist alike for almost two decades. Its clinical association with autism spectrum disorders (ASD) is well established, however, its diversification into sex chromosome-specific copies, NLGN4X and NLGN4Y , remains uncharted territory. Just recently, the presence of substantial neuroligin-4 sequence differences between humans and laboratory mice, in which Nlgn4 is a pseudoautosomal gene, could be explained as a consequence of dramatic changes affecting the pseudoautosomal region on both sex chromosomes in a subset of rodents, the clade eumuroida. In this study, we describe the presence of sex chromosome-specific copies of neuroligin-4 genes in the Mongolian gerbil ( Meriones unguiculatus ) marking the first encounter of its kind in rodents. Gerbils are members of the family Muridae and are closely related to mice and rats. Our results have been incorporated into an extended evolutionary analysis covering primates, rodents, lagomorphs, treeshrews and culogos comprising together the mammalian superorder euarchontoglires. We gathered evidence that substantial changes in neuroligin-4 genes have also occurred outside eumuroida in other rodent species as well as in lagomorphs. These changes feature, e.g., a general reduction of its gene size, an increase in its average GC-content as well as in the third position (GC3) of synonymous codons, and the accumulation of repetitive sequences in line with previous observations. We further show conclusively that the diversification of neuroligin-4 in sex chromosome-specific copies has happened multiple times independently during mammal evolution proving that Y-chromosomal NLGN4Y genes do not originate from a single common NLGN4Y ancestor."],["dc.description.abstract","The neural cell adhesion protein neuroligin-4 has puzzled neuroscientists and geneticist alike for almost two decades. Its clinical association with autism spectrum disorders (ASD) is well established, however, its diversification into sex chromosome-specific copies, NLGN4X and NLGN4Y , remains uncharted territory. Just recently, the presence of substantial neuroligin-4 sequence differences between humans and laboratory mice, in which Nlgn4 is a pseudoautosomal gene, could be explained as a consequence of dramatic changes affecting the pseudoautosomal region on both sex chromosomes in a subset of rodents, the clade eumuroida. In this study, we describe the presence of sex chromosome-specific copies of neuroligin-4 genes in the Mongolian gerbil ( Meriones unguiculatus ) marking the first encounter of its kind in rodents. Gerbils are members of the family Muridae and are closely related to mice and rats. Our results have been incorporated into an extended evolutionary analysis covering primates, rodents, lagomorphs, treeshrews and culogos comprising together the mammalian superorder euarchontoglires. We gathered evidence that substantial changes in neuroligin-4 genes have also occurred outside eumuroida in other rodent species as well as in lagomorphs. These changes feature, e.g., a general reduction of its gene size, an increase in its average GC-content as well as in the third position (GC3) of synonymous codons, and the accumulation of repetitive sequences in line with previous observations. We further show conclusively that the diversification of neuroligin-4 in sex chromosome-specific copies has happened multiple times independently during mammal evolution proving that Y-chromosomal NLGN4Y genes do not originate from a single common NLGN4Y ancestor."],["dc.identifier.doi","10.3389/fnmol.2022.838262"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107406"],["dc.notes.intern","DOI Import GROB-561"],["dc.relation.eissn","1662-5099"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Of Humans and Gerbils— Independent Diversification of Neuroligin-4 Into X- and Y-Specific Genes in Primates and Rodents"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI