Now showing 1 - 10 of 140
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","479"],["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Can, Karolina"],["dc.contributor.author","Menzfeld, Christiane"],["dc.contributor.author","Rinne, Lena"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Kügler, Sebastian"],["dc.contributor.author","Golubiani, Gocha"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Müller, Michael"],["dc.date.accessioned","2019-07-09T11:51:15Z"],["dc.date.available","2019-07-09T11:51:15Z"],["dc.date.issued","2019"],["dc.description.abstract","Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT."],["dc.identifier.doi","10.3389/fphys.2019.00479"],["dc.identifier.pmid","31114506"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16085"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59907"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A06: Mitochondrienfunktion und -umsatz in Synapsen"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O2 Consumption and ROS Release"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e9561"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Wasilewski, Michal"],["dc.contributor.author","Benincá, Cristiane"],["dc.contributor.author","Cysewski, Dominik"],["dc.contributor.author","Poznanski, Jaroslaw"],["dc.contributor.author","Sakowska, Paulina"],["dc.contributor.author","Bugajska, Zaneta"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Fernandez‐Vizarra, Erika"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dadlez, Michal"],["dc.contributor.author","Zeviani, Massimo"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.date.accessioned","2019-07-09T11:51:37Z"],["dc.date.available","2019-07-09T11:51:37Z"],["dc.date.issued","2019"],["dc.description.abstract","Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS. We also found that pathogenic mutant versions of COA7 are imported slower than the wild‐type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient‐derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins."],["dc.identifier.doi","10.15252/emmm.201809561"],["dc.identifier.pmid","30885959"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59974"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/64"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/322424/EU//MITCARE"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","540"],["dc.title","Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","154"],["dc.bibliographiccitation.volume","191"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Piechura, Heike"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2010"],["dc.description.abstract","Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation."],["dc.identifier.doi","10.1083/jcb.201007026"],["dc.identifier.gro","3142844"],["dc.identifier.isi","000282648500014"],["dc.identifier.pmid","20876281"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/293"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","64"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Orphanet Journal of Rare Diseases"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Reinert, Marie-Christine"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Catarino, Claudia B."],["dc.contributor.author","Klopstock, Thomas"],["dc.contributor.author","Ohlenbusch, Andreas"],["dc.contributor.author","Schittkowski, Michael Peter"],["dc.contributor.author","Wilichowski, Ekkehard"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Brockmann, Knut"],["dc.date.accessioned","2021-04-14T08:28:08Z"],["dc.date.available","2021-04-14T08:28:08Z"],["dc.date.issued","2021"],["dc.date.updated","2022-07-29T12:17:42Z"],["dc.description.abstract","Background Leber hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and characterized by acute or subacute painless visual loss. Environmental factors reported to trigger visual loss in LHON mutation carriers include smoking, heavy intake of alcohol, raised intraocular pressure, and some drugs, including several carbonic anhydrase inhibitors. The antiepileptic drug sulthiame (STM) is effective especially in focal seizures, particularly in benign epilepsy of childhood with centrotemporal spikes, and widely used in pediatric epileptology. STM is a sulfonamide derivate and an inhibitor of mammalian carbonic anhydrase isoforms I–XIV. Results We describe two unrelated patients, an 8-year-old girl and an 11-year-old boy, with cryptogenic focal epilepsy, who suffered binocular (subject #1) or monocular (subject #2) visual loss in close temporal connection with starting antiepileptic pharmacotherapy with STM. In both subjects, visual loss was due to LHON. We used real-time respirometry in fibroblasts derived from LHON patients carrying the same mitochondrial mutations as our two subjects to investigate the effect of STM on oxidative phosphorylation. Oxygen consumption rate in fibroblasts from a healthy control was not impaired by STM compared with a vehicle control. In contrast, fibroblasts carrying the m.14484T>C or the m.3460G>A LHON mutation displayed a drastic reduction of the respiration rate when treated with STM compared to vehicle control. Conclusions Our observations point to a causal relationship between STM treatment and onset or worsening of visual failure in two subjects with LHON rather than pure coincidence. We conclude that antiepileptic medication with STM may pose a risk for visual loss in LHON mutation carriers and should be avoided in these patients."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Orphanet Journal of Rare Diseases. 2021 Feb 04;16(1):64"],["dc.identifier.doi","10.1186/s13023-021-01690-y"],["dc.identifier.pmid","33541401"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17726"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82509"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/219"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/102"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A06: Mitochondrienfunktion und -umsatz in Synapsen"],["dc.relation.eissn","1750-1172"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Sulthiame"],["dc.subject","Carbonic anhydrase inhibitor"],["dc.subject","Adverse effects"],["dc.subject","Leber hereditary optic neuropathy"],["dc.subject","LHON"],["dc.subject","Oxygen consumption rate"],["dc.title","Sulthiame impairs mitochondrial function in vitro and may trigger onset of visual loss in Leber hereditary optic neuropathy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2642"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","2649"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Becker, Dorothea"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","van der Laan, Martin"],["dc.date.accessioned","2017-09-07T11:48:16Z"],["dc.date.available","2017-09-07T11:48:16Z"],["dc.date.issued","2008"],["dc.description.abstract","The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase."],["dc.identifier.doi","10.1091/mbc.E07-12-1226"],["dc.identifier.gro","3143286"],["dc.identifier.isi","000259155200028"],["dc.identifier.pmid","18400944"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/783"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.title","Mitochondrial protein import motor: Differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","1237"],["dc.bibliographiccitation.firstpage","1237"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","1"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Morgenstern, Marcel"],["dc.contributor.author","Rucktäschel, Robert"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:08:26Z"],["dc.date.available","2018-01-09T14:08:26Z"],["dc.date.issued","2017"],["dc.description.abstract","The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex's membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step-motor module formation."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.format.extent","1"],["dc.identifier.doi","10.1038/s41467-017-01437-z"],["dc.identifier.pmid","29093463"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11598"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","INA complex liaises the F1Fo-ATP synthase membrane motor modules"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020-02-13Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Journal of Molecular Biology"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Wasilewski, Michał"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Gibhardt, Christine Silvia"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Chudenkova, Margarita"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Bogeski, Ivan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:00Z"],["dc.date.available","2020-04-29T13:50:00Z"],["dc.date.issued","2020-02-13"],["dc.description.abstract","The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis."],["dc.identifier.doi","10.1016/j.jmb.2020.01.036"],["dc.identifier.pmid","32061935"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64482"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/339"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/110"],["dc.language.iso","en"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege"],["dc.relation.eissn","1089-8638"],["dc.relation.issn","0022-2836"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Bogeski"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2008Conference Abstract
    [["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Bioenergetics"],["dc.bibliographiccitation.volume","1777"],["dc.contributor.author","Wagner, Karina"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Brandner, Katrin"],["dc.contributor.author","Pfanner, Nikolaus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-11-07T11:12:55Z"],["dc.date.available","2018-11-07T11:12:55Z"],["dc.date.issued","2008"],["dc.format.extent","S42"],["dc.identifier.doi","10.1016/j.bbabio.2008.05.168"],["dc.identifier.isi","000258037700158"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53773"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation.conference","15th European Bioenergetic Conference"],["dc.relation.eventlocation","Trinity Coll, Dublin, IRELAND"],["dc.relation.issn","0005-2728"],["dc.title","Biogenesis of the mitochondrial carrier translocase"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","643"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","656"],["dc.bibliographiccitation.volume","195"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:19Z"],["dc.date.available","2017-09-07T11:43:19Z"],["dc.date.issued","2011"],["dc.description.abstract","N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner."],["dc.identifier.doi","10.1083/jcb.201105098"],["dc.identifier.gro","3142630"],["dc.identifier.isi","000297206400012"],["dc.identifier.pmid","22065641"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8033"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Tim50's presequence receptor domain is essential for signal driven transport across the TIM23 complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS