Options
Kong, Deqing
Loading...
Preferred name
Kong, Deqing
Official Name
Kong, Deqing
Alternative Name
Kong, D.
Main Affiliation
Now showing 1 - 6 of 6
2014Journal Article [["dc.bibliographiccitation.firstpage","208"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Developmental Biology"],["dc.bibliographiccitation.lastpage","220"],["dc.bibliographiccitation.volume","390"],["dc.contributor.author","Zhang, Yujun"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Reichl, Lars"],["dc.contributor.author","Vogt, Nina"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Großhans, Jörg"],["dc.date.accessioned","2017-09-07T11:45:40Z"],["dc.date.available","2017-09-07T11:45:40Z"],["dc.date.issued","2014"],["dc.description.abstract","The majority of membrane and secreted proteins, including many developmentally important signalling proteins, receptors and adhesion molecules, are cotranslationally N-glycosylated in the endoplasmic reticulum. The structure of the N-glycan is invariant for all substrates and conserved in eukaryotes. Correspondingly, the enzymes are conserved, which successively assemble the glycan precursor from activated monosaccharides prior to transfer to nascent proteins. Despite the well-defined biochemistry, the physiological and developmental role of N-glycosylation and of the responsible enzymes has not been much investigated in metazoa. We identified a mutation in the Drosophila gene, xiantuan (xit, CG4542), which encodes one of the conserved enzymes involved in addition of the terminal glucose residues to the glycan precursor. xit is required for timely apical constriction of mesoderm precursor cells and ventral furrow formation in early embryogenesis. Furthermore, cell intercalation in the lateral epidermis during germband extension is impaired in xit mutants. xit affects glycosylation and intracellular distribution of E-Cadherin, albeit not the total amount of E-Cadherin protein. As depletion of E-Cadherin by RNAi induces a similar cell intercalation defect, E-Cadherin may be the major xit target that is functionally relevant for germband extension."],["dc.identifier.doi","10.1016/j.ydbio.2014.03.007"],["dc.identifier.gro","3151839"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11361"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8666"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","0012-1606"],["dc.rights","CC BY-NC-ND 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/3.0"],["dc.title","The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-Cadherin expression and is required for gastrulation movements in Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","2601"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","2608"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Karsch, Susanne"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Großhans, Jörg"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2020-12-10T14:22:44Z"],["dc.date.available","2020-12-10T14:22:44Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.bpj.2017.10.025"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71713"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Single-Cell Defects Cause a Long-Range Mechanical Response in a Confluent Epithelial Cell Layer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","2796"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","2804"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Prahlad, Achintya"],["dc.contributor.author","Spalthoff, Christian"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Großhans, Jörg"],["dc.contributor.author","Göpfert, Martin C."],["dc.contributor.author","Schmidt, Christoph F."],["dc.date.accessioned","2020-12-10T14:22:44Z"],["dc.date.available","2020-12-10T14:22:44Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.bpj.2017.08.061"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71712"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Mechanical Properties of a Drosophila Larval Chordotonal Organ"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","2564"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Current Biology"],["dc.bibliographiccitation.lastpage","2573.e5"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Lv, Zhiyi"],["dc.contributor.author","Rosenbaum, Jan"],["dc.contributor.author","Mohr, Stephan"],["dc.contributor.author","Zhang, Xiaozhu"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Preiß, Helen"],["dc.contributor.author","Kruss, Sebastian"],["dc.contributor.author","Alim, Karen"],["dc.contributor.author","Aspelmeier, Timo"],["dc.contributor.author","Großhans, Jörg"],["dc.date.accessioned","2021-04-14T08:24:37Z"],["dc.date.available","2021-04-14T08:24:37Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.cub.2020.04.078"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81354"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.issn","0960-9822"],["dc.title","The Emergent Yo-yo Movement of Nuclei Driven by Cytoskeletal Remodeling in Pseudo-synchronous Mitotic Cycles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Review [["dc.bibliographiccitation.firstpage","11"],["dc.bibliographiccitation.journal","Mechanisms of Development"],["dc.bibliographiccitation.lastpage","22"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Großhans, Jörg"],["dc.date.accessioned","2018-11-07T10:25:37Z"],["dc.date.available","2018-11-07T10:25:37Z"],["dc.date.issued","2017"],["dc.description.abstract","Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. (C) 2016 The Authors. Published by Elsevier Ireland Ltd."],["dc.identifier.doi","10.1016/j.mod.2016.12.001"],["dc.identifier.isi","000398868100003"],["dc.identifier.pmid","28013027"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42888"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1872-6356"],["dc.relation.issn","0925-4773"],["dc.title","Forces directing germ-band extension in Drosophila embryos"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Conference Abstract [["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Prahlad, A."],["dc.contributor.author","Spalthoff, Christian"],["dc.contributor.author","Warren, Ben"],["dc.contributor.author","Kong, Deqing"],["dc.contributor.author","Grosshans, Joerg"],["dc.contributor.author","Göpfert, Martin C."],["dc.contributor.author","Schmidt, C. F."],["dc.date.accessioned","2018-11-07T10:19:35Z"],["dc.date.available","2018-11-07T10:19:35Z"],["dc.date.issued","2016"],["dc.identifier.isi","000396046900963"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41692"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Cell Biology"],["dc.publisher.place","Bethesda"],["dc.relation.conference","Annual Meeting of the American-Society-for-Cell-Biology (ASCB)"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.issn","1939-4586"],["dc.relation.issn","1059-1524"],["dc.title","Mechanical properties of the lch5 organ of Drosophila."],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS