Now showing 1 - 6 of 6
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","237"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","242"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Chizhik, Anna M."],["dc.contributor.author","Stein, Simon"],["dc.contributor.author","Dekaliuk, Mariia O."],["dc.contributor.author","Battle, Christopher"],["dc.contributor.author","Li, Weixing"],["dc.contributor.author","Huss, Anja"],["dc.contributor.author","Platen, Mitja"],["dc.contributor.author","Schaap, Iwan A. T."],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Demchenko, Alexander P."],["dc.contributor.author","Schmidt, Christoph F."],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey"],["dc.date.accessioned","2017-09-07T11:54:46Z"],["dc.date.available","2017-09-07T11:54:46Z"],["dc.date.issued","2016"],["dc.description.abstract","Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFT). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching."],["dc.identifier.doi","10.1021/acs.nanolett.5b03609"],["dc.identifier.gro","3141754"],["dc.identifier.isi","000368322700038"],["dc.identifier.pmid","26605640"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/702"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1530-6992"],["dc.relation.issn","1530-6984"],["dc.title","Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022-03-21Journal Article
    [["dc.bibliographiccitation.artnumber","243"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","The European Physical Journal C"],["dc.bibliographiccitation.volume","82"],["dc.contributor.author","Abt, I."],["dc.contributor.author","Aggarwal, R."],["dc.contributor.author","Andreev, V."],["dc.contributor.author","Arratia, M."],["dc.contributor.author","Aushev, V."],["dc.contributor.author","Baghdasaryan, A."],["dc.contributor.author","Baty, A."],["dc.contributor.author","Begzsuren, K."],["dc.contributor.author","Behnke, O."],["dc.contributor.author","Belousov, A."],["dc.contributor.author","Bertolin, A."],["dc.contributor.author","Bloch, I."],["dc.contributor.author","Boudry, V."],["dc.contributor.author","Brandt, G."],["dc.contributor.author","Brock, I."],["dc.contributor.author","Brook, N. H."],["dc.contributor.author","Brugnera, R."],["dc.contributor.author","Bruni, A."],["dc.contributor.author","Buniatyan, A."],["dc.contributor.author","Bussey, P. J."],["dc.contributor.author","Bystritskaya, L."],["dc.contributor.author","Caldwell, A."],["dc.contributor.author","Campbell, A. J."],["dc.contributor.author","Cantun Avila, K. B."],["dc.contributor.author","Catterall, C. D."],["dc.contributor.author","Cerny, K."],["dc.contributor.author","Chekelian, V."],["dc.contributor.author","Chen, Z."],["dc.contributor.author","Chwastowski, J."],["dc.contributor.author","Ciborowski, J."],["dc.contributor.author","Ciesielski, R."],["dc.contributor.author","Contreras, J. G."],["dc.contributor.author","Cooper-Sarkar, A. M."],["dc.contributor.author","Corradi, M."],["dc.contributor.author","Cunqueiro Mendez, L."],["dc.contributor.author","Currie, J."],["dc.contributor.author","Cvach, J."],["dc.contributor.author","Dainton, J. B."],["dc.contributor.author","Daum, K."],["dc.contributor.author","Dementiev, R. K."],["dc.contributor.author","Deshpande, A."],["dc.contributor.author","Diaconu, C."],["dc.contributor.author","Dusini, S."],["dc.contributor.author","Eckerlin, G."],["dc.contributor.author","Egli, S."],["dc.contributor.author","Elsen, E."],["dc.contributor.author","Favart, L."],["dc.contributor.author","Fedotov, A."],["dc.contributor.author","Feltesse, J."],["dc.contributor.author","Ferrando, J."],["dc.contributor.author","Hoffmann, D."],["dc.contributor.author","Huss, A."],["dc.contributor.author","Meyer, J."],["dc.contributor.author","Sauter, M."],["dc.contributor.author","Schöning, A."],["dc.contributor.author","Zhang, J."],["dc.contributor.authorgroup","(H1 and ZEUS collaborations)"],["dc.date.accessioned","2022-05-02T08:09:20Z"],["dc.date.accessioned","2022-08-18T12:30:15Z"],["dc.date.available","2022-05-02T08:09:20Z"],["dc.date.available","2022-08-18T12:30:15Z"],["dc.date.issued","2022-03-21"],["dc.date.updated","2022-07-29T10:09:47Z"],["dc.description.abstract","Abstract\r\n The HERAPDF2.0 ensemble of parton distribution functions (PDFs) was introduced in 2015. The final stage is presented, a next-to-next-to-leading-order (NNLO) analysis of the HERA data on inclusive deep inelastic ep scattering together with jet data as published by the H1 and ZEUS collaborations. A perturbative QCD fit, simultaneously of \r\n \r\n \r\n \r\n $\\alpha _s(M_Z^2)$\r\n \r\n \r\n \r\n α\r\n s\r\n \r\n \r\n (\r\n \r\n M\r\n Z\r\n 2\r\n \r\n )\r\n \r\n \r\n \r\n and the PDFs, was performed with the result \r\n \r\n \r\n \r\n $\\alpha _s(M_Z^2)= 0.1156 \\pm 0.0011~\\mathrm{(exp)}~ ^{+0.0001}_{-0.0002}~ \\mathrm{(model}$\r\n \r\n \r\n \r\n α\r\n s\r\n \r\n \r\n (\r\n \r\n M\r\n Z\r\n 2\r\n \r\n )\r\n \r\n =\r\n 0.1156\r\n ±\r\n 0.0011\r\n \r\n \r\n (\r\n exp\r\n )\r\n \r\n \r\n \r\n \r\n -\r\n 0.0002\r\n \r\n \r\n +\r\n 0.0001\r\n \r\n \r\n \r\n \r\n (\r\n model\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n $\\mathrm{+ parameterisation)}~ \\pm 0.0029~\\mathrm{(scale)}$\r\n \r\n \r\n \r\n +\r\n parameterisation\r\n )\r\n \r\n \r\n ±\r\n 0.0029\r\n \r\n \r\n (\r\n scale\r\n )\r\n \r\n \r\n \r\n . The PDF sets of HERAPDF2.0Jets NNLO were determined with separate fits using two fixed values of \r\n \r\n \r\n \r\n $\\alpha _s(M_Z^2)$\r\n \r\n \r\n \r\n α\r\n s\r\n \r\n \r\n (\r\n \r\n M\r\n Z\r\n 2\r\n \r\n )\r\n \r\n \r\n \r\n , \r\n \r\n \r\n \r\n $\\alpha _s(M_Z^2)=0.1155$\r\n \r\n \r\n \r\n α\r\n s\r\n \r\n \r\n (\r\n \r\n M\r\n Z\r\n 2\r\n \r\n )\r\n \r\n =\r\n 0.1155\r\n \r\n \r\n and 0.118, since the latter value was already chosen for the published HERAPDF2.0 NNLO analysis based on HERA inclusive DIS data only. The different sets of PDFs are presented, evaluated and compared. The consistency of the PDFs determined with and without the jet data demonstrates the consistency of HERA inclusive and jet-production cross-section data. The inclusion of the jet data reduced the uncertainty on the gluon PDF. Predictions based on the PDFs of HERAPDF2.0Jets NNLO give an excellent description of the jet-production data used as input."],["dc.identifier.citation","The European Physical Journal C. 2022 Mar 21;82(3):243"],["dc.identifier.doi","10.1140/epjc/s10052-022-10083-9"],["dc.identifier.pii","10083"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107357"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112888"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-561"],["dc.publisher","Springer Berlin Heidelberg"],["dc.relation.eissn","1434-6052"],["dc.relation.issn","1434-6044"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Impact of jet-production data on the next-to-next-to-leading-order determination of HERAPDF2.0 parton distributions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Erratum
    [["dc.bibliographiccitation.artnumber","738"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","The European Physical Journal C"],["dc.bibliographiccitation.volume","81"],["dc.contributor.author","Andreev, V."],["dc.contributor.author","Baghdasaryan, A."],["dc.contributor.author","Begzsuren, K."],["dc.contributor.author","Belousov, A."],["dc.contributor.author","Bertone, V."],["dc.contributor.author","Bolz, A."],["dc.contributor.author","Boudry, V."],["dc.contributor.author","Brandt, G."],["dc.contributor.author","Brisson, V."],["dc.contributor.author","Britzger, D."],["dc.contributor.author","Zomer, F."],["dc.contributor.author","Hoffmann, D."],["dc.contributor.author","Huss, A."],["dc.contributor.author","Meyer, J."],["dc.contributor.author","Müller, K."],["dc.contributor.author","Sauter, M."],["dc.contributor.author","Schmitt, S."],["dc.contributor.author","Schöning, A."],["dc.contributor.authorgroup","H1 Collaboration"],["dc.date.accessioned","2021-10-01T09:58:09Z"],["dc.date.available","2021-10-01T09:58:09Z"],["dc.date.issued","2021"],["dc.date.updated","2022-07-29T10:07:06Z"],["dc.description.abstract","Abstract The determination of the strong coupling constant $\\alpha _{\\mathrm{s}} (m_{\\mathrm{Z}})$ α s ( m Z ) from H1 inclusive and dijet cross section data [1] exploits perturbative QCD predictions in next-to-next-to-leading order (NNLO) [2–4]. An implementation error in the NNLO predictions was found [4] which changes the numerical values of the predictions and the resulting values of the fits. Using the corrected NNLO predictions together with inclusive jet and dijet data, the strong coupling constant is determined to be $\\alpha _{\\mathrm{s}} (m_{\\mathrm{Z}}) =0.1166\\,(19)_{\\mathrm{exp}}\\,(24)_{\\mathrm{th}}$ α s ( m Z ) = 0.1166 ( 19 ) exp ( 24 ) th . Complementarily, $\\alpha _{\\mathrm{s}} (m_{\\mathrm{Z}})$ α s ( m Z ) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value $\\alpha _{\\mathrm{s}} (m_{\\mathrm{Z}}) =0.1147\\,(25)_{\\mathrm{tot}}$ α s ( m Z ) = 0.1147 ( 25 ) tot obtained is consistent with the determination from jet data alone. Corrected figures and numerical results are provided and the discussion is adapted accordingly."],["dc.identifier.citation","The European Physical Journal C. 2021 Aug 16;81(8):738"],["dc.identifier.doi","10.1140/epjc/s10052-021-09394-0"],["dc.identifier.pii","9394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89999"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.publisher","Springer Berlin Heidelberg"],["dc.relation.eissn","1434-6052"],["dc.relation.isdataof","/handle/2/59131"],["dc.relation.issn","1434-6044"],["dc.rights.holder","The Author(s)"],["dc.title","Erratum to: Determination of the strong coupling constant $\\alpha _{\\mathrm{s}} (m_{\\mathrm{Z}})$ in next-to-next-to-leading order QCD using H1 jet cross section measurements"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","16154"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","16163"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Stein, Simon C."],["dc.contributor.author","Huss, Anja"],["dc.contributor.author","Hähnel, Dirk"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2018-04-23T11:49:24Z"],["dc.date.available","2018-04-23T11:49:24Z"],["dc.date.issued","2015"],["dc.description.abstract","Stochastic Optical Fluctuation Imaging (SOFI) is a super-resolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data."],["dc.identifier.doi","10.1364/oe.23.016154"],["dc.identifier.gro","3142110"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13689"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.doi","10.1364/oe.23.016154"],["dc.relation.eissn","1094-4087"],["dc.relation.issn","1094-4087"],["dc.relation.issn","1094-4087"],["dc.title","Fourier interpolation stochastic optical fluctuation imaging"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","5830"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Geissbuehler, Stefan"],["dc.contributor.author","Sharipov, Azat"],["dc.contributor.author","Godinat, Aurélien"],["dc.contributor.author","Bocchio, Noelia L."],["dc.contributor.author","Sandoz, Patrick A."],["dc.contributor.author","Huss, Anja"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","van der Goot, F. Gisou"],["dc.contributor.author","Dubikovskaya, Elena A."],["dc.contributor.author","Lasser, Theo"],["dc.contributor.author","Leutenegger, Marcel"],["dc.date.accessioned","2017-09-07T11:45:22Z"],["dc.date.available","2017-09-07T11:45:22Z"],["dc.date.issued","2014"],["dc.description.abstract","Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 x 65 x 3.5 mu m(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang."],["dc.identifier.doi","10.1038/ncomms6830"],["dc.identifier.gro","3142005"],["dc.identifier.isi","000347681600001"],["dc.identifier.pmid","25518894"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3490"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.title","Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Conference Abstract
    [["dc.bibliographiccitation.firstpage","155"],["dc.bibliographiccitation.journal","Multiple Sclerosis Journal"],["dc.bibliographiccitation.lastpage","156"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Tumani, Hayrettin"],["dc.contributor.author","Trebst, Corinna"],["dc.contributor.author","Spreer, Annette"],["dc.contributor.author","Borisow, Nadja"],["dc.contributor.author","Harrer, Andrea"],["dc.contributor.author","Brecht, I."],["dc.contributor.author","Buttmann, Mathias"],["dc.contributor.author","Balint, Balazs"],["dc.contributor.author","Stich, Oliver"],["dc.contributor.author","Schlegel, Sabine"],["dc.contributor.author","Winkelmann, Alexander"],["dc.contributor.author","Roesler, Romy"],["dc.contributor.author","Lauda, Florian"],["dc.contributor.author","Huss, A."],["dc.contributor.author","Yildiz, O. E."],["dc.contributor.author","Voss, Elke"],["dc.contributor.author","Muche, Rainer"],["dc.contributor.author","Rauer, Sebastian"],["dc.contributor.author","Bergh, F. Then"],["dc.contributor.author","Paul, Friedemann"],["dc.contributor.author","Wildemann, Brigitte"],["dc.contributor.author","Kraus, J."],["dc.contributor.author","Ruprecht, Klemens"],["dc.contributor.author","Stangel, Martin"],["dc.contributor.author","Otto, Markus"],["dc.contributor.author","Zettl, Uwe K."],["dc.date.accessioned","2018-11-07T09:35:27Z"],["dc.date.available","2018-11-07T09:35:27Z"],["dc.date.issued","2014"],["dc.identifier.isi","000354441300361"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32385"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Sage Publications Ltd"],["dc.publisher.place","London"],["dc.relation.conference","Joint ACTRIMS-ECTRIMS Meeting"],["dc.relation.eventlocation","Boston, MA"],["dc.relation.issn","1477-0970"],["dc.relation.issn","1352-4585"],["dc.title","Importance of CSF analysis in the era of McDonald 2010 criteria: a retrospective multicenter study in patients with a clinically isolated syndrome"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS