Now showing 1 - 10 of 41
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","088102"],["dc.bibliographiccitation.firstpage","3"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","112"],["dc.contributor.author","Weinhausen, Britta"],["dc.contributor.author","Saldanha, Oliva"],["dc.contributor.author","Wilke, Robin N."],["dc.contributor.author","Dammann, Christian"],["dc.contributor.author","Priebe, Marius"],["dc.contributor.author","Burghammer, Manfred"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2017-09-07T11:46:29Z"],["dc.date.available","2017-09-07T11:46:29Z"],["dc.date.issued","2014"],["dc.description.abstract","High-resolution x-ray imaging techniques offer a variety of possibilities for studying the nanoscale structure of biological cells. A challenging task remains the study of cells by x rays in their natural, aqueous environment. Here, we overcome this limitation by presenting scanning x-ray diffraction measurements with beam sizes in the range of a few hundred nm on living and fixed-hydrated eukaryotic cells in microfluidic devices which mimic a native environment. The direct comparison between fixed-hydrated and living cells shows distinct differences in the scattering signal, pointing to structural changes on the order of 30 to 50 nm."],["dc.identifier.doi","10.1103/PhysRevLett.112.088102"],["dc.identifier.gro","3142182"],["dc.identifier.isi","000331957600012"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5443"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Scanning X-Ray Nanodiffraction on Living Eukaryotic Cells in Microfluidic Environments"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","439"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The European Physical Journal E - Soft Matter"],["dc.bibliographiccitation.lastpage","449"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Kierfeld, Jan"],["dc.contributor.author","Pfohl, Thomas"],["dc.date.accessioned","2017-09-07T11:48:46Z"],["dc.date.available","2017-09-07T11:48:46Z"],["dc.date.issued","2008"],["dc.description.abstract","Confinement effects on single semiflexible macromolecules are of central importance for a fundamental understanding of cellular processes involving biomacromolecules. To analyze the influence of confinement on the fluctuations of semiflexible macromolecules we study individual actin filaments in straight and curved microchannels. We experimentally characterize the segment distributions for fluctuating semiflexible filaments in microchannels as a function of the channel width. Moreover, the effect of channel curvature on the filament fluctuations is investigated. We find quantitative agreement between experimental results, Monte Carlo simulations, and the analytical description. This allows for determination of the persistence length of actin filaments, the deflection length, which characterizes the confinement effects, and the scaling exponents for the segment distribution of semiflexible macromolecules."],["dc.identifier.doi","10.1140/epje/i2007-10312-3"],["dc.identifier.gro","3143323"],["dc.identifier.isi","000255867900010"],["dc.identifier.pmid","18425410"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/825"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1292-8941"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Characterization of single semiflexible filaments under geometric constraints"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","735"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","745"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Perego, Eleonora"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2021-04-14T08:28:33Z"],["dc.date.available","2021-04-14T08:28:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Despite the importance for cellular processes, the dynamics of molecular assembly, especially on fast time scales, is not yet fully understood. To this end, we present a multi-layer microfluidic device and combine it with fluorescence fluctuation spectroscopy. We apply this innovative combination of methods to investigate the early steps in assembly of vimentin intermediate filaments (IFs). These filaments, together with actin filaments and microtubules, constitute the cytoskeleton of cells of mesenchymal origin and greatly influence their mechanical properties. We are able to directly follow the two-step assembly process of vimentin IFs and quantify the time scale of the first lateral step to tens of ms with a lag time of below 3 ms. Although demonstrated for a specific biomolecular system here, our method may potentially be employed for a wide range of fast molecular reactions in biological or, more generally, soft matter systems, as it allows for a precise quantification of the kinetics underlying the aggregation and assembly."],["dc.identifier.doi","10.1039/d0lc00985g"],["dc.identifier.pmid","33491697"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82646"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/116"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/89"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B02: Ein in vitro-Verfahren zum Verständnis der struktur-organisierenden Rolle des Vesikel-Clusters"],["dc.relation.eissn","1473-0189"],["dc.relation.issn","1473-0197"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights","CC BY 3.0"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","molecular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Exploring early time points of vimentin assembly in flow by fluorescence fluctuation spectroscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","44"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","49"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schmitz, Christian H. J."],["dc.contributor.author","Rowat, Amy C."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:47:35Z"],["dc.date.available","2017-09-07T11:47:35Z"],["dc.date.issued","2009"],["dc.description.abstract","We present a simple microfluidic device that uses an array of well-defined chambers to immobilize thousands of femtoliter-to picoliter-scale aqueous drops suspended in inert carrier oil. This device enables timelapse studies of large numbers of individual drops, while simultaneously enabling subsequent drop recovery."],["dc.identifier.doi","10.1039/b809670h"],["dc.identifier.gro","3143172"],["dc.identifier.isi","000262649400007"],["dc.identifier.pmid","19209334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/656"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1473-0197"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Dropspots"],["dc.title.subtitle","A picoliter array in a microfluidic device"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","771"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Motility and the Cytoskeleton"],["dc.bibliographiccitation.lastpage","776"],["dc.bibliographiccitation.volume","66"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Pfohl, Thomas"],["dc.date.accessioned","2017-09-07T11:46:50Z"],["dc.date.available","2017-09-07T11:46:50Z"],["dc.date.issued","2009"],["dc.description.abstract","The motility, shape, and functionality of the cell depend sensitively on cytoskeletal mechanics which in turn is governed by the properties of filamentous proteins mainly actin, microtubules, and intermediate filaments. These biopolymers are confined in the dense cytoplasm and therefore experience strong geometric constraints on their equilibrium thermal fluctuations. To obtain a better understanding of the influence of confinement on cytoskeletal filaments we study the thermal fluctuations of individual actin filaments in a microfluidic in vitro system by fluorescence microscopy and determine the persistence length of the filaments by analyzing the radial distribution function. A unique feature of this method is that we obtain the persistence length without detailed knowledge of the complete contour of the filament which makes the technique applicable to a broad range of biological polymers, including those with a persistence length smaller than the optical resolution."],["dc.identifier.doi","10.1002/cm.20336"],["dc.identifier.gro","3143045"],["dc.identifier.isi","000270500800002"],["dc.identifier.pmid","19137583"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/516"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0886-1544"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","An In Vitro Model System for Cytoskeletal Confinement"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2167"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biomacromolecules"],["dc.bibliographiccitation.lastpage","2172"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Pfohl, Thomas"],["dc.contributor.author","Otten, Alexander"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Dootz, Rolf"],["dc.contributor.author","Struth, Bernd"],["dc.contributor.author","Evans, Heather M."],["dc.date.accessioned","2017-09-07T11:49:28Z"],["dc.date.available","2017-09-07T11:49:28Z"],["dc.date.issued","2007"],["dc.description.abstract","DNA condensation in vivo usually requires proteins and/or multivalent salts. Here, we explore the in vitro compaction of DNA by cationic dendrimers having an intermediate size and charge. The dynamic assembly of DNA-dendrimer mesophases is discernible due to the laminar flow in a specially designed X-ray compatible microfluidic device. The setup ensures a nonequilibrium ascent of reactant concentration, and the resulting progression of DNA compaction was detected online using microfocused small-angle X-ray diffraction. The evolution of a DNA-dendrimer columnar square mesophase as a function of increasing dendrimer content is described. Additionally, in regions of maximum shear, an unexpected high-level perpendicular ordering of this phase is recorded. Furthermore, these assemblies are found to be in coexistence with a densely packed DNA-only mesophase in regions of excess DNA. The latter is reminiscent of dense packing found in bacteriophage and chromosomes, although surprisingly, it is not stabilized by direct dendrimer contact."],["dc.identifier.doi","10.1021/bm070317s"],["dc.identifier.gro","3143474"],["dc.identifier.isi","000247820000019"],["dc.identifier.pmid","17579478"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/992"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1525-7797"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","molecular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Highly packed and oriented DNA mesophases identified using in situ microfluidic X-ray microdiffraction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","110301"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Physics D: Applied Physics"],["dc.bibliographiccitation.lastpage","3"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2017-09-07T11:47:46Z"],["dc.date.available","2017-09-07T11:47:46Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1088/0022-3727/46/11/110301"],["dc.identifier.gro","3142373"],["dc.identifier.isi","000315353800001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7564"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0022-3727"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","microfluidics"],["dc.title","Microfluidics-from fundamental research to industrial applications"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","96"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Small"],["dc.bibliographiccitation.lastpage","100"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Dootz, Rolf"],["dc.contributor.author","Evans, Heather M."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Pfohl, Thomas"],["dc.date.accessioned","2017-09-07T11:49:53Z"],["dc.date.available","2017-09-07T11:49:53Z"],["dc.date.issued","2007"],["dc.description.abstract","Microfluidics meets microdiffraction: A straightforward and inexpensive method of fabricating long‐lifetime, X‐ray‐microdiffraction compatible, ultrathin microfluidic devices with an overwhelming versatility with respect to channel design elements is presented (see image). To illustrate the analytic power and geometric flexibility of these microflow foils, X‐ray microdiffraction measurements on shear‐induced alignment effects in the smectic liquid crystal n‐octyl‐4‐cyanobiphenyl are shown."],["dc.identifier.doi","10.1002/smll.200600288"],["dc.identifier.gro","3143568"],["dc.identifier.isi","000243478200014"],["dc.identifier.pmid","17294477"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1096"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1613-6810"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","microfluidics"],["dc.title","Rapid prototyping of X-ray microdiffraction compatible continuous microflow foils"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2005Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","745"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Synchrotron Radiation"],["dc.bibliographiccitation.lastpage","750"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Otten, Alexander"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Struth, Bernd"],["dc.contributor.author","Snigirev, Anatoly"],["dc.contributor.author","Pfohl, Thomas"],["dc.date.accessioned","2017-09-07T11:53:40Z"],["dc.date.available","2017-09-07T11:53:40Z"],["dc.date.issued","2005"],["dc.description.abstract","The combination of X- ray microdiffraction and microfluidics is used to investigate the dynamic behaviour of soft materials. A microfocused X- ray beam enables the observation of the influence of droplet formation on the nanostructure of a smectic liquid crystal in water. Using a hydrodynamic focusing device, the evolution of the intercalation of DNA into multilamellar membranes can be studied. Owing to the elongational flow at the centre of this device, alignment of the material is induced which allows for an improved structural characterization. Furthermore, the influence of strain applied to these materials can be tested."],["dc.identifier.doi","10.1107/S0909049505013580"],["dc.identifier.gro","3143792"],["dc.identifier.isi","000232619300009"],["dc.identifier.pmid","16239743"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1344"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0909-0495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","molecular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Microfluidics of soft matter investigated by small-angle X-ray scattering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","875"],["dc.bibliographiccitation.firstpage","427"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Chemistry & Biology"],["dc.bibliographiccitation.lastpage","437"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Clausell-Tormos, Jenifer"],["dc.contributor.author","Lieber, Diana"],["dc.contributor.author","Baret, Jean-Christophe"],["dc.contributor.author","El-Harrak, Abdeslam"],["dc.contributor.author","Miller, Oliver J."],["dc.contributor.author","Frenz, Lucas"],["dc.contributor.author","Blouwolff, Joshua"],["dc.contributor.author","Humphry, Katherine J."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Duan, Honey"],["dc.contributor.author","Holtze, Christian"],["dc.contributor.author","Weitz, David A."],["dc.contributor.author","Griffiths, Andrew D."],["dc.contributor.author","Merten, Christoph A."],["dc.date.accessioned","2020-03-10T14:59:12Z"],["dc.date.available","2020-03-10T14:59:12Z"],["dc.date.issued","2008"],["dc.description.abstract","High-throughput, cell-based assays require small sample volumes to reduce assay costs and to allow for rapid sample manipulation. However, further miniaturization of conventional microtiter plate technology is problematic due to evaporation and capillary action. To overcome these limitations, we describe droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil. Synthesis of biocompatible surfactants and identification of gas-permeable storage systems allowed human cells, and even a Multicellular organism (C. elegans), to survive and proliferate within the microcompartments for several days. Microcompartments containing single cells could be reinjected into a microfluidic device after incubation to measure expression of a reporter gene. This should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has similar to 500x higher throughput than conventional microtiter plate assays."],["dc.identifier.doi","10.1016/j.chembiol.2008.08.004"],["dc.identifier.gro","3143303"],["dc.identifier.isi","000256183200007"],["dc.identifier.pmid","18482695"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63284"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Medical Research Council"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1074-5521"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS