Options
Simon, Klaus
Loading...
Preferred name
Simon, Klaus
Official Name
Simon, Klaus
Alternative Name
Simon, K.
Main Affiliation
Now showing 1 - 8 of 8
2014Journal Article [["dc.bibliographiccitation.firstpage","48"],["dc.bibliographiccitation.journal","Precambrian Research"],["dc.bibliographiccitation.lastpage","62"],["dc.bibliographiccitation.volume","255"],["dc.contributor.author","Duda, Jan-Peter"],["dc.contributor.author","Blumenberg, Martin"],["dc.contributor.author","Thiel, Volker"],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Zhu, Maoyan"],["dc.contributor.author","Reitner, Joachim"],["dc.date.accessioned","2018-11-07T09:31:39Z"],["dc.date.available","2018-11-07T09:31:39Z"],["dc.date.issued","2014"],["dc.description.abstract","Despite the importance of palaeoecosystems with Ediacara-type fossils for the early evolution of metazoans, only little is known about the interplay of geological and biological processes in these environments. The reason is that sedimentary structures, biogenic structures and (bio-) geochemical signatures (e.g. hydrocarbon biomarkers) are commonly not well preserved due to the predominance of volcanic and siliciclastic lithologies. The Shibantan Member (Dengying Formation, South China) is one of only few carbonate settings with Ediacara-type organisms worldwide and its lithology promises an excellent preservation of sedimentary fades and (bio-) geochemical signatures. Here we provide the first comprehensive geobiological characterisation of the Shibantan Member in order to reconstruct the interplay between sedimentary and (bio-) geochemical processes and to assess the microbial activities in the palaeoecosystem with Ediacara-type fossils. Fades analyses revealed that carbonate and organic matter were autochthonously formed by (bio-) geochemical processes linked to microbial mats. However, the material was frequently reworked and re-deposited within the same setting (i.e. para-autochthonous) as evidenced by small-scale (hummocky-) cross stratification, erosional contacts, lenticular bedding and load casts. Negative Ce anomalies (Ce/Ce ) and low V/Cr ratios demonstrate that molecular O-2 was present in the water column, whereas characteristic Ni/Co-, V/(V + Ni), and V/Sc ratios suggest the contemporaneous presence of sub- to anoxic water. Taken together, these observations imply a temporarily stratified water body frequently mixed and ventilated by storms. C-13-enrichments in the Shibantan carbonates (delta C-13 = +3.29 to + 3.98 parts per thousand, VPDB) together with C-13-depletions of syngenetic n-alkanes cleaved from the extraction residue using catalytic hydropyrolysis (HyPy; delta C-13 = -31.7 to -363 parts per thousand, VPDB) could indicate a significant withdrawal of C-12 by primary producers that thrived within the mats. At the same time, sulphurised biomarkers in the bitumen and HyPy-pyrolysate hint at organic matter decomposition and concomitant sulphide production by sulphate reducing bacteria. When oxygen was available at the sediment-water interface due to mixing by storms, sulphide oxidising bacteria were possibly temporarily favoured. The results demonstrated that palaeoenvironmental conditions dynamically changed through a complex interplay of biogenic and abiogenic processes. (C) 2014 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.precamres.2014.09.012"],["dc.identifier.isi","000347578000003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31580"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1872-7433"],["dc.relation.issn","0301-9268"],["dc.title","Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying Formation, South China)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI WOS2009Conference Abstract [["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Geochimica et Cosmochimica Acta"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Heim, Christine"],["dc.contributor.author","Lausmaa, Jukka"],["dc.contributor.author","Sjovall, Peter"],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Thiel, Volker"],["dc.date.accessioned","2018-11-07T08:29:13Z"],["dc.date.available","2018-11-07T08:29:13Z"],["dc.date.issued","2009"],["dc.identifier.isi","000267229901256"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16597"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.publisher.place","Oxford"],["dc.relation.conference","19th Annual VM Goldschmidt Conference"],["dc.relation.eventlocation","Davos, SWITZERLAND"],["dc.title","Traces of a fossil deep biosphere in fracture fillings of the Aspo Diorite (Sweden)"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2011Book Chapter [["dc.bibliographiccitation.firstpage","221"],["dc.bibliographiccitation.lastpage","231"],["dc.bibliographiccitation.seriesnr","131"],["dc.contributor.author","Kurz, Jens"],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Heim, Christine N."],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Quéric, Nadia Valérie"],["dc.contributor.author","Thiel, Volker"],["dc.contributor.editor","Reitner, Joachim"],["dc.contributor.editor","Quéric, Nadia Valérie"],["dc.contributor.editor","Arp, Gernot"],["dc.date.accessioned","2019-11-06T10:08:00Z"],["dc.date.available","2019-11-06T10:08:00Z"],["dc.date.issued","2011"],["dc.description.abstract","The Äspö Hard Rock Laboratory (Äspö HRL) is a tunnel located near Oskarshamn in the southeast of Sweden, that serves as a testing environment for the disposal of nuclear waste. The Äspö HRL hosts and makes accessible a wide spectrum of microbially driven subsurface ecosystems (Pedersen 1997)."],["dc.identifier.doi","10.1007/978-3-642-10415-2_15"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62569"],["dc.language.iso","en"],["dc.publisher","Springer"],["dc.publisher.place","Berlin"],["dc.relation.crisseries","Lecture Notes in Earth Sciences"],["dc.relation.doi","10.1007/978-3-642-10415-2"],["dc.relation.isbn","978-3-642-10414-5"],["dc.relation.isbn","978-3-642-10415-2"],["dc.relation.ispartof","Advances in Stromatolite Geobiology"],["dc.relation.ispartofseries","Lecture Notes in Earth Sciences;131"],["dc.relation.issn","0930-0317"],["dc.title","Trace Element and Biomarker Signatures in Iron-Precipitating Microbial Mats from the Tunnel of Äspö (Sweden)"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.artnumber","6"],["dc.bibliographiccitation.journal","Frontiers in Earth Science"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Heim, Christine N."],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Ionescu, Danny"],["dc.contributor.author","Reimer, Andreas"],["dc.contributor.author","de Beer, Dirk"],["dc.contributor.author","Quéric, Nadia Valérie"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Thiel, Volker"],["dc.date.accessioned","2019-07-09T11:41:14Z"],["dc.date.available","2019-07-09T11:41:14Z"],["dc.date.issued","2015"],["dc.description.abstract","Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments, and mine drainage systems. Along with these minerals, trace and rare earth elements (TREE) are being accumulated within the mineralizing microbial mats. TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. However, whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well-understood. Here we report on long-term flow reactor studies performed in the Tunnel of Äspö (Äspö Hard Rock Laboratory, Sweden). The development of microbial mats dominated by iron-oxidizing bacteria (FeOB), namely Mariprofundus sp. and Gallionella sp were investigated. The feeder fluids of the flow reactors were tapped at 183 and 290 m below sea-level from two brackish, but chemically different aquifers within the surrounding, ~1.8 Ga old, granodioritic rocks. The experiments investigated the accumulation and fractionation of TREE under controlled conditions of the subsurface continental biosphere, and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. After 2 and 9 months, concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 103- to 105-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y) contents were 104- and 106-fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations (BIFs). The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. Remarkably, these abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror closely the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. Likewise, all TREE studied showed an overall similar fractionation behavior in biogenic, abiotic, and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential utility of these elements as microbial biosignatures."],["dc.identifier.doi","10.3389/feart.2015.00006"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58377"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","2296-6463"],["dc.relation.issn","2296-6463"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2010Conference Paper [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.journal","Journal of Earth Science"],["dc.bibliographiccitation.lastpage","324"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Leefmann, Tim"],["dc.contributor.author","Heim, Christine N."],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Quéric, Nadia Valérie"],["dc.contributor.author","Hansen, Bent Tauber"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Thiel, Volker"],["dc.contributor.author","Lausmaa, Jukka"],["dc.contributor.author","Sjovall, Peter"],["dc.date.accessioned","2018-11-07T08:42:49Z"],["dc.date.available","2018-11-07T08:42:49Z"],["dc.date.issued","2010"],["dc.identifier.isi","000278830800098"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19793"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","China Univ Geosciences"],["dc.publisher.place","Wuhan"],["dc.relation.conference","International Conference on Geobiology"],["dc.relation.eventlocation","Wuhan, PEOPLES R CHINA"],["dc.relation.issn","1674-487X"],["dc.title","Biosignatures of Mineralizing Microbial Mats in a Deep Biosphere Environment"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2011Book Chapter [["dc.bibliographiccitation.firstpage","435"],["dc.bibliographiccitation.lastpage","451"],["dc.bibliographiccitation.seriesnr","131"],["dc.contributor.author","Sanchez-Beristain, Francisco"],["dc.contributor.author","Schäfer, Nadine"],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Reitner, Joachim"],["dc.date.accessioned","2019-11-06T10:17:41Z"],["dc.date.available","2019-11-06T10:17:41Z"],["dc.date.issued","2011"],["dc.description.abstract","The St. Cassian Formation (Upper Ladinian–Lower Carnian, Dolomites, Northeastern Italy) has been the subject of numerous studies “with various approaches”. The St. Cassian Formation was first mentioned in the first half of the nineteenth century (e.g., Wissmann and Münster 1841)."],["dc.identifier.doi","10.1007/978-3-642-10415-2_26"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62573"],["dc.language.iso","en"],["dc.publisher","Springer"],["dc.publisher.place","Berlin"],["dc.relation.crisseries","Lecture Notes in Earth Sciences"],["dc.relation.doi","10.1007/978-3-642-10415-2"],["dc.relation.isbn","978-3-642-10414-5"],["dc.relation.isbn","978-3-642-10415-2"],["dc.relation.ispartof","Advances in Stromatolite Geobiology"],["dc.relation.ispartofseries","Lecture Notes in Earth Sciences;131"],["dc.relation.issn","0930-0317"],["dc.title","New Geochemical Method to Characterise Microbialites from the St. Cassian Formation, Dolomites, Northeastern Italy"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.firstpage","280"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Geobiology"],["dc.bibliographiccitation.lastpage","297"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Heim, Christine N."],["dc.contributor.author","Lausmaa, Jukka"],["dc.contributor.author","Sjovall, Peter"],["dc.contributor.author","Toporski, Jan"],["dc.contributor.author","Dieing, T."],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Hansen, Bent Tauber"],["dc.contributor.author","Kronz, Andreas"],["dc.contributor.author","Arp, Gernot"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.author","Thiel, Volker"],["dc.date.accessioned","2018-11-07T09:08:54Z"],["dc.date.available","2018-11-07T09:08:54Z"],["dc.date.issued","2012"],["dc.description.abstract","Fracture minerals within the 1.8-Ga-old Aspo Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Aspo Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20100 mu m), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, CxHy+, CxHyN+, CxHyO+. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, d13C, d18O and 87Sr/86Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past."],["dc.description.sponsorship","German Research Foundation (DFG)"],["dc.identifier.doi","10.1111/j.1472-4669.2012.00328.x"],["dc.identifier.isi","000305080200002"],["dc.identifier.pmid","22506979"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26139"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1472-4677"],["dc.title","Ancient microbial activity recorded in fracture fillings from granitic rocks (Aspo Hard Rock Laboratory, Sweden)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Book Chapter [["dc.bibliographiccitation.firstpage","409"],["dc.bibliographiccitation.lastpage","434"],["dc.bibliographiccitation.seriesnr","131"],["dc.contributor.author","Rodriguez-Martinez, Marta"],["dc.contributor.author","Heim, Christine N."],["dc.contributor.author","Simon, Klaus"],["dc.contributor.author","Zilla, Thomas"],["dc.contributor.author","Reitner, Joachim"],["dc.contributor.editor","Reitner, Joachim"],["dc.contributor.editor","Quéric, Nadia Valérie"],["dc.contributor.editor","Arp, Gernot"],["dc.date.accessioned","2019-11-06T10:15:52Z"],["dc.date.available","2019-11-06T10:15:52Z"],["dc.date.issued","2011"],["dc.description.abstract","Foraminifera are the most abundant sessile organisms found on ferromanganese crusts and nodules (Greenslate 1974; Wendt 1974; Dugolinsky et al. 1977; Riemann 1983; von Stackelberg 1984; Mullineaux 1987, 1988; Verlaan 1992; Resig and Glenn 1997; Toscano and Raspini 2005). In fact, actual ferromanganesecrusts and nodules share numerous similarities with their fossil counterparts."],["dc.identifier.doi","10.1007/978-3-642-10415-2_25"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62572"],["dc.language.iso","en"],["dc.publisher","Springer"],["dc.publisher.place","Berlin"],["dc.relation.crisseries","Lecture Notes in Earth Sciences"],["dc.relation.doi","10.1007/978-3-642-10415-2"],["dc.relation.isbn","978-3-642-10414-5"],["dc.relation.isbn","978-3-642-10415-2"],["dc.relation.ispartof","Advances in Stromatolite Geobiology"],["dc.relation.ispartofseries","Lecture Notes in Earth Sciences;131"],["dc.relation.issn","0930-0317"],["dc.title","Tolypammina gregaria Wendt 1969-Frutexites Assemblage and Ferromanganese Crusts: A Coupled Nutrient-Metal Interplay in the Carnian Sedimentary Condensed Record of Hallstatt Facies (Austria)"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI