Now showing 1 - 10 of 59
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","136"],["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.bibliographiccitation.lastpage","142"],["dc.bibliographiccitation.volume","248"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Shang, Quanliang"],["dc.contributor.author","Joseph, Navya"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Danford, David A."],["dc.contributor.author","Beerbaum, Phillip"],["dc.contributor.author","Sarikouch, Samir"],["dc.date.accessioned","2020-12-10T14:24:31Z"],["dc.date.available","2020-12-10T14:24:31Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.ijcard.2017.06.121"],["dc.identifier.issn","0167-5273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72276"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Abnormal right atrial performance in repaired tetralogy of Fallot: A CMR feature tracking analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e006785"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation: Cardiovascular Imaging"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","von Roeder, Maximilian"],["dc.contributor.author","Rommel, Karl-Philipp"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Blazek, Stephan"],["dc.contributor.author","Besler, Christian"],["dc.contributor.author","Fengler, Karl"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lücke, Christian"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Schuler, Gerhard"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lurz, Philipp"],["dc.date.accessioned","2018-04-23T11:48:10Z"],["dc.date.available","2018-04-23T11:48:10Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1161/circimaging.117.006785"],["dc.identifier.gro","3142332"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13467"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/110017"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.eissn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.title","Response by von Roeder et al to Letter Regarding Article, “Influence of Left Atrial Function on Exercise Capacity and Left Ventricular Function in Patients With Heart Failure and Preserved Ejection Fraction”"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","54"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Clinical Research in Cardiology"],["dc.bibliographiccitation.lastpage","66"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","von Roeder, Maximilian"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Rommel, Karl-Philipp"],["dc.contributor.author","Blazek, Stephan"],["dc.contributor.author","Besler, Christian"],["dc.contributor.author","Fengler, Karl"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lücke, Christian"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lurz, Philipp"],["dc.date.accessioned","2020-12-10T14:10:23Z"],["dc.date.available","2020-12-10T14:10:23Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00392-019-01484-0"],["dc.identifier.eissn","1861-0692"],["dc.identifier.issn","1861-0684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70742"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Right atrial–right ventricular coupling in heart failure with preserved ejection fraction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","218"],["dc.bibliographiccitation.journal","SpringerPlus"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Goth, Sabrina"],["dc.contributor.author","Sohns, Christian"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Buchwald, Christina Unterberg"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Lotz, Joachim"],["dc.date.accessioned","2018-11-07T09:41:07Z"],["dc.date.available","2018-11-07T09:41:07Z"],["dc.date.issued","2014"],["dc.description.abstract","Purpose: Aim of the study was to investigate diagnostic accuracy of cardiac computed tomography angiography (CCTA) between left ventricular end-systolic (LVES) and left ventricular end-diastolic (LVED) cardiac phase for thrombus detection in patient's prior to pulmonary vein isolation (PVI). Materials and methods: 182 consecutive Patients with drug refractory AF scheduled for PVI (62.6% male, mean age 64.1 +/- 10.2 years) underwent routine pre-procedural evaluation including transesophageal echocardiography (TEE) and CCTA for evaluation of left atrial (LA)/left atrial appendage (LAA) anatomy and thrombus formation. Qualitative and quantitative analysis (using aorta ascendens (AA)/LAA ratio) was performed. Measurements of the LA/LAA in LVES and LVED cardiac phase were obtained. Results: End-systolic volumes (LA/LAA) measured in 30 patients without filling defects as control group and all 14 with filling defects of 182 patients were significantly larger (p < 0.01) than in end-diastolic phase. Qualitative analysis was inferior to quantitative analysis using LA/LAA ratio (<0.5; accuracy: 100%, 88%, 100%, 99% vs 100%). 5 out of 182 patients (2.7%) showed thrombus formation of the LAA in CCTA confirmed by TEE and quantitative analysis. Intra/-interobserver variability was lower in end-systolic vs end-diastolic reconstruction interval. Conclusion: For evaluating CCTA datasets in patients prior PVI, the LVES reconstruction interval is recommended due to significantly larger LA/LAA volumes and lower intra/-interobserver variability's."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1186/2193-1801-3-218"],["dc.identifier.isi","000359026000005"],["dc.identifier.pmid","25279273"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11751"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33654"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","2193-1801"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Comparison of end-diastolic versus end-systolic cardiac-computed tomography reconstruction interval in patient's prior to pulmonary vein isolation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Navarra, Jenny-Lou"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-08-06T12:07:43Z"],["dc.date.available","2019-08-06T12:07:43Z"],["dc.date.issued","2019"],["dc.description.abstract","Sex-specific outcome data following myocardial infarction (MI) are inconclusive with some evidence suggesting association of female sex and increased major adverse cardiac events (MACE). Since mechanistic principles remain elusive, we aimed to quantify the underlying phenotype using cardiovascular magnetic resonance (CMR) quantitative deformation imaging and tissue characterisation."],["dc.identifier.doi","10.1016/j.ijcard.2019.06.036"],["dc.identifier.pmid","31300172"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62311"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1874-1754"],["dc.relation.issn","0167-5273"],["dc.title","Atrioventricular mechanical coupling and major adverse cardiac events in female patients following acute ST elevation myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e109164"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Lamata, Pablo"],["dc.contributor.author","Hussain, Shazia T."],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Objectives: Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Methods: Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 mu g.kg(-1).min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Results: Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 +/- 1.5 degrees cm(-1), 3.6 +/- 2.0 degrees cm(-1), 5.1 +/- 2.2 degrees cm(-1), p<0.01; Global Recoil Rate: -30.1 +/- 11.1 degrees cm(-1) s (-1), -469 +/- 15.0 degrees cm (-1) s (-1), -68.9 +/- 32.3 degrees cm(-1) s(-1), p<0.01; for rest, 10 and 20 mu g.kg(-1).min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. Conclusions: CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1371/journal.pone.0109164"],["dc.identifier.gro","3142035"],["dc.identifier.isi","000345743700050"],["dc.identifier.pmid","25285656"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10994"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3823"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantification of Left Ventricular Torsion and Diastolic Recoil Using Cardiovascular Magnetic Resonance Myocardial Feature Tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","e0202146"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Chiribiri, Amedeo"],["dc.contributor.author","Möller, Christian"],["dc.contributor.author","Graf, Tobias"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Villa, Adriana"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.editor","Novo, Giuseppina"],["dc.date.accessioned","2020-12-10T18:42:08Z"],["dc.date.available","2020-12-10T18:42:08Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1371/journal.pone.0202146"],["dc.identifier.eissn","1932-6203"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15691"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Right ventricular strain assessment by cardiovascular magnetic resonance myocardial feature tracking allows optimized risk stratification in Takotsubo syndrome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019-11-01Journal Article
    [["dc.bibliographiccitation.firstpage","1262"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","European Heart Journal - Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","1270"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stulle, Alina"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.date.accessioned","2020-04-03T13:12:22Z"],["dc.date.available","2020-04-03T13:12:22Z"],["dc.date.issued","2019-11-01"],["dc.description.abstract","Cardiovascular magnetic resonance feature tracking (CMR-FT) global longitudinal strain (GLS) provides incremental prognostic value following acute myocardial infarction (AMI) but requires substantial post-processing. Alternatively, manual global long-axis strain (LAS) can be easily assessed from standard steady state free precession images. We aimed to define the prognostic value of LAS in a large multicentre study in patients following AMI."],["dc.identifier.doi","10.1093/ehjci/jez077"],["dc.identifier.pmid","31329854"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63616"],["dc.language.iso","en"],["dc.relation.eissn","2047-2412"],["dc.relation.issn","2047-2404"],["dc.relation.issn","2047-2412"],["dc.title","Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","601"],["dc.bibliographiccitation.journal","SpringerPlus"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Schneider, Heike"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Ritter, Christian"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.date.accessioned","2018-11-07T09:33:32Z"],["dc.date.available","2018-11-07T09:33:32Z"],["dc.date.issued","2014"],["dc.description.abstract","Introduction: Situs inversus totalis with congenitally corrected transposition of the great arteries represents a relatively rare congenital condition. Case description: The current report describes the case of a 56 year old patient with an atrio-ventricular and ventricular-arterial discordance of the heart chambers without surgical correction, incidentally detected during hepatocellular carcinoma evaluation. The systemic venous blood arrived via the right atrium and a mitral valve in the morphologically left but pulmonary arterial ventricle that gave rise to a pulmonary trunk. The pulmonary venous blood passed the left atrium and the tricuspid valve into a morphologically right but systemic ventricle that gave rise to the aorta. Discussion and evaluation: The switched anatomy was incidentally detected on echocardiography. The patient was referred to cardiac magnetic resonance imaging (CMR) including flow measurements, volumetry and late enhancement. CMR results showed a mildly impaired function and the switched anatomy. During a follow-up period of 2 years the patient was suffering from only mild heart failure and dyspnea. Conclusions: Heart failure symptoms and arrhythmias can appear with increasing age in patients with congenitally corrected transposition. Early CMR allows accurate diagnosis and timely introduction of adequate therapy thereby avoiding disease progression."],["dc.identifier.doi","10.1186/2193-1801-3-601"],["dc.identifier.isi","000359108200001"],["dc.identifier.pmid","25392774"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11150"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31986"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","2193-1801"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Situs inversus totalis with congenitally corrected transposition of the great arteries: insights from cardiac MRI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","965512"],["dc.bibliographiccitation.journal","Frontiers in Cardiovascular Medicine"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Schulz, Alexander"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Vollmann, Dirk"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","von Haehling, Stephan"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2022-10-04T10:21:43Z"],["dc.date.available","2022-10-04T10:21:43Z"],["dc.date.issued","2022"],["dc.description.abstract","Background\r\n The risk of myocarditis after mRNA vaccination against COVID-19 has emerged recently. Current evidence suggests that young male patients are predominantly affected. In the majority of the cases, only mild symptoms were observed. However, little is known about cardiac magnetic resonance (CMR) imaging patterns in mRNA-related myocarditis and their differences when compared to classical viral myocarditis in the acute phase of inflammation.\r\n \r\n \r\n Methods and results\r\n \r\n In total, 10 mRNA vaccination-associated patients with myocarditis were retrospectively enrolled in this study and compared to 10 patients suffering from viral myocarditis, who were matched for age, sex, comorbidities, and laboratory markers. All patients (\r\n n\r\n = 20) were hospitalized and underwent a standardized clinical examination, as well as an echocardiography and a CMR. Both, clinical and imaging findings and, in particular, functional and volumetric CMR assessments, as well as detailed tissue characterization using late gadolinium enhancement and T1 + T2-weighted sequences, were compared between both groups. The median age of the overall cohort was 26 years (group 1: 25.5; group 2: 27.5;\r\n p\r\n = 0.57). All patients described chest pain as the leading reason for their initial presentation. CMR volumetric and functional parameters did not differ significantly between both groups. In all cases, the lateral left ventricular wall showed late gadolinium enhancement without significant differences in terms of the localization or in-depth tissue characterization (late gadolinium enhancement [LGE] enlargement: group 1: 5.4%; group 2: 6.5%;\r\n p\r\n = 0.14; T2 global/maximum value: group 1: 38.9/52 ms; group 2: 37.8/54.5 ms;\r\n p\r\n = 0.79 and\r\n p\r\n = 0.80).\r\n \r\n \r\n \r\n Conclusion\r\n This study yielded the first evidence that COVID-19 mRNA vaccine-associated myocarditis does not show specific CMR patterns during the very acute stage in the most affected patient group of young male patients. The observed imaging markers were closely related to regular viral myocarditis in our cohort. Additionally, we could not find any markers implying adverse outcomes in this relatively little number of patients; however, this has to be confirmed by future studies that will include larger sample sizes."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.3389/fcvm.2022.965512"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114481"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","2297-055X"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Cardiovascular magnetic resonance imaging patterns of acute COVID-19 mRNA vaccine-associated myocarditis in young male patients: A first single-center experience"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI