Options
Kowallick, Johannes Tammo
Loading...
Preferred name
Kowallick, Johannes Tammo
Official Name
Kowallick, Johannes Tammo
Alternative Name
Kowallick, Johannes T.
Kowallick, J. T.
Kowallick, Johannes
Kowallick, J.
Main Affiliation
Now showing 1 - 10 of 46
2017Journal Article [["dc.bibliographiccitation.artnumber","e006785"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation: Cardiovascular Imaging"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","von Roeder, Maximilian"],["dc.contributor.author","Rommel, Karl-Philipp"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Blazek, Stephan"],["dc.contributor.author","Besler, Christian"],["dc.contributor.author","Fengler, Karl"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lücke, Christian"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Schuler, Gerhard"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lurz, Philipp"],["dc.date.accessioned","2018-04-23T11:48:10Z"],["dc.date.available","2018-04-23T11:48:10Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1161/circimaging.117.006785"],["dc.identifier.gro","3142332"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13467"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/110017"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.eissn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.title","Response by von Roeder et al to Letter Regarding Article, “Influence of Left Atrial Function on Exercise Capacity and Left Ventricular Function in Patients With Heart Failure and Preserved Ejection Fraction”"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","54"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Clinical Research in Cardiology"],["dc.bibliographiccitation.lastpage","66"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","von Roeder, Maximilian"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Rommel, Karl-Philipp"],["dc.contributor.author","Blazek, Stephan"],["dc.contributor.author","Besler, Christian"],["dc.contributor.author","Fengler, Karl"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lücke, Christian"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lurz, Philipp"],["dc.date.accessioned","2020-12-10T14:10:23Z"],["dc.date.available","2020-12-10T14:10:23Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00392-019-01484-0"],["dc.identifier.eissn","1861-0692"],["dc.identifier.issn","1861-0684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70742"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Right atrial–right ventricular coupling in heart failure with preserved ejection fraction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Navarra, Jenny-Lou"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-08-06T12:07:43Z"],["dc.date.available","2019-08-06T12:07:43Z"],["dc.date.issued","2019"],["dc.description.abstract","Sex-specific outcome data following myocardial infarction (MI) are inconclusive with some evidence suggesting association of female sex and increased major adverse cardiac events (MACE). Since mechanistic principles remain elusive, we aimed to quantify the underlying phenotype using cardiovascular magnetic resonance (CMR) quantitative deformation imaging and tissue characterisation."],["dc.identifier.doi","10.1016/j.ijcard.2019.06.036"],["dc.identifier.pmid","31300172"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62311"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1874-1754"],["dc.relation.issn","0167-5273"],["dc.title","Atrioventricular mechanical coupling and major adverse cardiac events in female patients following acute ST elevation myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e109164"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Lamata, Pablo"],["dc.contributor.author","Hussain, Shazia T."],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Objectives: Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Methods: Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 mu g.kg(-1).min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Results: Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 +/- 1.5 degrees cm(-1), 3.6 +/- 2.0 degrees cm(-1), 5.1 +/- 2.2 degrees cm(-1), p<0.01; Global Recoil Rate: -30.1 +/- 11.1 degrees cm(-1) s (-1), -469 +/- 15.0 degrees cm (-1) s (-1), -68.9 +/- 32.3 degrees cm(-1) s(-1), p<0.01; for rest, 10 and 20 mu g.kg(-1).min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. Conclusions: CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1371/journal.pone.0109164"],["dc.identifier.gro","3142035"],["dc.identifier.isi","000345743700050"],["dc.identifier.pmid","25285656"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10994"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3823"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantification of Left Ventricular Torsion and Diastolic Recoil Using Cardiovascular Magnetic Resonance Myocardial Feature Tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.firstpage","e0202146"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Chiribiri, Amedeo"],["dc.contributor.author","Möller, Christian"],["dc.contributor.author","Graf, Tobias"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Villa, Adriana"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.editor","Novo, Giuseppina"],["dc.date.accessioned","2020-12-10T18:42:08Z"],["dc.date.available","2020-12-10T18:42:08Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1371/journal.pone.0202146"],["dc.identifier.eissn","1932-6203"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15691"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Right ventricular strain assessment by cardiovascular magnetic resonance myocardial feature tracking allows optimized risk stratification in Takotsubo syndrome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019-11-01Journal Article [["dc.bibliographiccitation.firstpage","1262"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","European Heart Journal - Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","1270"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stulle, Alina"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.date.accessioned","2020-04-03T13:12:22Z"],["dc.date.available","2020-04-03T13:12:22Z"],["dc.date.issued","2019-11-01"],["dc.description.abstract","Cardiovascular magnetic resonance feature tracking (CMR-FT) global longitudinal strain (GLS) provides incremental prognostic value following acute myocardial infarction (AMI) but requires substantial post-processing. Alternatively, manual global long-axis strain (LAS) can be easily assessed from standard steady state free precession images. We aimed to define the prognostic value of LAS in a large multicentre study in patients following AMI."],["dc.identifier.doi","10.1093/ehjci/jez077"],["dc.identifier.pmid","31329854"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63616"],["dc.language.iso","en"],["dc.relation.eissn","2047-2412"],["dc.relation.issn","2047-2404"],["dc.relation.issn","2047-2412"],["dc.title","Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.artnumber","965512"],["dc.bibliographiccitation.journal","Frontiers in Cardiovascular Medicine"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Schulz, Alexander"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Vollmann, Dirk"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","von Haehling, Stephan"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2022-10-04T10:21:43Z"],["dc.date.available","2022-10-04T10:21:43Z"],["dc.date.issued","2022"],["dc.description.abstract","Background\r\n The risk of myocarditis after mRNA vaccination against COVID-19 has emerged recently. Current evidence suggests that young male patients are predominantly affected. In the majority of the cases, only mild symptoms were observed. However, little is known about cardiac magnetic resonance (CMR) imaging patterns in mRNA-related myocarditis and their differences when compared to classical viral myocarditis in the acute phase of inflammation.\r\n \r\n \r\n Methods and results\r\n \r\n In total, 10 mRNA vaccination-associated patients with myocarditis were retrospectively enrolled in this study and compared to 10 patients suffering from viral myocarditis, who were matched for age, sex, comorbidities, and laboratory markers. All patients (\r\n n\r\n = 20) were hospitalized and underwent a standardized clinical examination, as well as an echocardiography and a CMR. Both, clinical and imaging findings and, in particular, functional and volumetric CMR assessments, as well as detailed tissue characterization using late gadolinium enhancement and T1 + T2-weighted sequences, were compared between both groups. The median age of the overall cohort was 26 years (group 1: 25.5; group 2: 27.5;\r\n p\r\n = 0.57). All patients described chest pain as the leading reason for their initial presentation. CMR volumetric and functional parameters did not differ significantly between both groups. In all cases, the lateral left ventricular wall showed late gadolinium enhancement without significant differences in terms of the localization or in-depth tissue characterization (late gadolinium enhancement [LGE] enlargement: group 1: 5.4%; group 2: 6.5%;\r\n p\r\n = 0.14; T2 global/maximum value: group 1: 38.9/52 ms; group 2: 37.8/54.5 ms;\r\n p\r\n = 0.79 and\r\n p\r\n = 0.80).\r\n \r\n \r\n \r\n Conclusion\r\n This study yielded the first evidence that COVID-19 mRNA vaccine-associated myocarditis does not show specific CMR patterns during the very acute stage in the most affected patient group of young male patients. The observed imaging markers were closely related to regular viral myocarditis in our cohort. Additionally, we could not find any markers implying adverse outcomes in this relatively little number of patients; however, this has to be confirmed by future studies that will include larger sample sizes."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.3389/fcvm.2022.965512"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114481"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","2297-055X"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Cardiovascular magnetic resonance imaging patterns of acute COVID-19 mRNA vaccine-associated myocarditis in young male patients: A first single-center experience"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","3970"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Journal of Clinical Medicine"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Hub, Sebastian"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.editor","Santarpino, Giuseppe"],["dc.date.accessioned","2021-10-01T09:58:14Z"],["dc.date.available","2021-10-01T09:58:14Z"],["dc.date.issued","2021"],["dc.description.abstract","Aortic valve calcification (AVC) in aortic stenosis patients has diagnostic and prognostic implications. Little is known about the interchangeability of AVC obtained from different multidetector computed tomography (MDCT) software solutions. Contrast-enhanced MDCT data sets of 50 randomly selected aortic stenosis patients were analysed using three different software vendors (3Mensio, CVI42, Syngo.Via). A subset of 10 patients were analysed twice for the estimation of intra-observer variability. Intra- and inter-observer variability were determined using the ICC reliability method, Bland-Altman analysis and coefficients of variation. No differences were revealed between the software solutions in the AVC calculations (3Mensio 941 ± 623, Syngo.Via 948 mm3 ± 655, CVI42 941 ± 637; p = 0.455). The best inter-vendor agreement was found between the CVI42 and the Syngo.Via (ICC 0.997 (CI 0.995–0.998)), followed by the 3Mensio and the CVI42 (ICC 0.996 (CI 0.922–0.998)), and the 3Mensio and the Syngo.Via (ICC 0.992 (CI 0.986–0.995)). There was excellent intra- (3Mensio: ICC 0.999 (0.995–1.000); CVI42: ICC 1.000 (0.999–1.000); Syngo.Via: ICC 0.998 (0.993–1.000)) and inter-observer variability (3Mensio: ICC 1.000 (0.999–1.000); CVI42: ICC 1.000 (1.000–1.000); Syngo.Via: ICC 0.996 (0.985–0.999)) for all software types. Contrast-enhanced MDCT-derived AVC scores are interchangeable between and reproducible within different commercially available software solutions. This is important since sufficient reproducibility, interchangeability and valid results represent prerequisites for accurate TAVR planning and its widespread clinical use."],["dc.description.abstract","Aortic valve calcification (AVC) in aortic stenosis patients has diagnostic and prognostic implications. Little is known about the interchangeability of AVC obtained from different multidetector computed tomography (MDCT) software solutions. Contrast-enhanced MDCT data sets of 50 randomly selected aortic stenosis patients were analysed using three different software vendors (3Mensio, CVI42, Syngo.Via). A subset of 10 patients were analysed twice for the estimation of intra-observer variability. Intra- and inter-observer variability were determined using the ICC reliability method, Bland-Altman analysis and coefficients of variation. No differences were revealed between the software solutions in the AVC calculations (3Mensio 941 ± 623, Syngo.Via 948 mm3 ± 655, CVI42 941 ± 637; p = 0.455). The best inter-vendor agreement was found between the CVI42 and the Syngo.Via (ICC 0.997 (CI 0.995–0.998)), followed by the 3Mensio and the CVI42 (ICC 0.996 (CI 0.922–0.998)), and the 3Mensio and the Syngo.Via (ICC 0.992 (CI 0.986–0.995)). There was excellent intra- (3Mensio: ICC 0.999 (0.995–1.000); CVI42: ICC 1.000 (0.999–1.000); Syngo.Via: ICC 0.998 (0.993–1.000)) and inter-observer variability (3Mensio: ICC 1.000 (0.999–1.000); CVI42: ICC 1.000 (1.000–1.000); Syngo.Via: ICC 0.996 (0.985–0.999)) for all software types. Contrast-enhanced MDCT-derived AVC scores are interchangeable between and reproducible within different commercially available software solutions. This is important since sufficient reproducibility, interchangeability and valid results represent prerequisites for accurate TAVR planning and its widespread clinical use."],["dc.identifier.doi","10.3390/jcm10173970"],["dc.identifier.pii","jcm10173970"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90018"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.publisher","MDPI"],["dc.relation.eissn","2077-0383"],["dc.rights","Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)."],["dc.title","Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021-05-17Journal Article Research Paper [["dc.bibliographiccitation.artnumber","60"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Cardiovascular Magnetic Resonance"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Schmidt-Rimpler, Jonas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Gertz, Roman J."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske-Kraigher, Elisabeth"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J."],["dc.date.accessioned","2021-11-25T11:12:48Z"],["dc.date.available","2021-11-25T11:12:48Z"],["dc.date.issued","2021-05-17"],["dc.date.updated","2021-11-19T12:47:36Z"],["dc.description.abstract","Abstract Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001–0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001–0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Journal of Cardiovascular Magnetic Resonance. 2021 May 17;23(1):60"],["dc.identifier.doi","10.1186/s12968-021-00740-5"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93537"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.publisher","BioMed Central"],["dc.relation.eissn","1532-429X"],["dc.relation.orgunit","Klinik für Kardiologie und Pneumologie"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.subject","Myocardial deformation"],["dc.subject","Strain"],["dc.subject","Cardiovascular magnetic resonance"],["dc.subject","Temporal resolution"],["dc.subject","Spatial resolution"],["dc.subject","Reproducibility"],["dc.title","Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","424"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Heart Rhythm"],["dc.bibliographiccitation.lastpage","432"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Weber-Krüger, Mark"],["dc.contributor.author","Bauer, Lukas"],["dc.contributor.author","Sohns, Christian"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Lüthje, Lars"],["dc.contributor.author","Zabel, Markus"],["dc.contributor.author","Bergau, Leonard"],["dc.date.accessioned","2020-12-10T14:24:26Z"],["dc.date.available","2020-12-10T14:24:26Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.hrthm.2018.09.016"],["dc.identifier.issn","1547-5271"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72245"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Reverse left ventricular structural remodeling after catheter ablation of atrial fibrillation in patients with preserved left ventricular function: Insights from cardiovascular magnetic resonance native T1 mapping"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI