Options
Kowallick, Johannes Tammo
Loading...
Preferred name
Kowallick, Johannes Tammo
Official Name
Kowallick, Johannes Tammo
Alternative Name
Kowallick, Johannes T.
Kowallick, J. T.
Kowallick, Johannes
Kowallick, J.
Main Affiliation
Now showing 1 - 10 of 20
2017Journal Article [["dc.bibliographiccitation.firstpage","136"],["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.bibliographiccitation.lastpage","142"],["dc.bibliographiccitation.volume","248"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Shang, Quanliang"],["dc.contributor.author","Joseph, Navya"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Danford, David A."],["dc.contributor.author","Beerbaum, Phillip"],["dc.contributor.author","Sarikouch, Samir"],["dc.date.accessioned","2020-12-10T14:24:31Z"],["dc.date.available","2020-12-10T14:24:31Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.ijcard.2017.06.121"],["dc.identifier.issn","0167-5273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72276"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Abnormal right atrial performance in repaired tetralogy of Fallot: A CMR feature tracking analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.artnumber","oeac053"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","European Heart Journal Open"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Backhaus, Sören J"],["dc.contributor.author","Rösel, Simon F"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Schmidt-Rimpler, Jonas"],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Schulz, Alexander"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Kowallick, Johannes T"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.editor","Gimelli, Alessia"],["dc.date.accessioned","2022-11-01T10:16:55Z"],["dc.date.available","2022-11-01T10:16:55Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n Aims\n Deformation imaging enables optimized risk prediction following acute myocardial infarction (AMI). However, costly and time-consuming post processing has hindered widespread clinical implementation. Since manual left-ventricular long-axis strain (LV LAS) has been successfully proposed as a simple alternative for LV deformation imaging, we aimed at the validation of left-atrial (LA) LAS.\n \n \n Methods and results\n The AIDA STEMI and TATORT-NSTEMI trials recruited 795 patients with ST-elevation myocardial infarction and 440 with non-ST-elevation myocardial infarction. LA LAS was assessed as the systolic distance change between the middle of a line connecting the origins of the mitral leaflets and either a perpendicular line towards the posterior atrial wall (LAS90) or a line connecting to the LA posterior portion of the greatest distance irrespective of a predefined angle (LAS). Primary endpoint was major adverse cardiac event (MACE) occurrence within 12 months. There were no significant differences between LA LAS and LAS90, both with excellent reproducibility. LA LAS correlated significantly with LA reservoir function (Es, r = 0.60, P < 0.001). Impaired LA LAS resulted in higher MACE occurrence [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.82–0.88, P < 0.001]. LA LAS (HR 0.90, 95% CI 0.83–0.97, P = 0.005) and LV global longitudinal strain (GLS, P = 0.025) were the only independent predictors for MACE in multivariate analyses. C-statistics demonstrated incremental value of LA LAS in addition to GLS (P = 0.016) and non-inferiority compared with FT Es (area under the receiver operating characteristic curve 0.74 vs. 0.69, P = 0.256).\n \n \n Conclusion\n Left-atrial LAS provides fast and software-independent approximations of quantitative LA function with similar value for risk prediction compared with dedicated deformation imaging.\n \n \n Clinical trial registration\n ClinicalTrials.gov: NCT00712101 and NCT01612312"],["dc.identifier.doi","10.1093/ehjopen/oeac053"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116687"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.relation.eissn","2752-4191"],["dc.title","Left-atrial long-axis shortening allows effective quantification of atrial function and optimized risk prediction following acute myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Navarra, Jenny-Lou"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-08-06T12:07:43Z"],["dc.date.available","2019-08-06T12:07:43Z"],["dc.date.issued","2019"],["dc.description.abstract","Sex-specific outcome data following myocardial infarction (MI) are inconclusive with some evidence suggesting association of female sex and increased major adverse cardiac events (MACE). Since mechanistic principles remain elusive, we aimed to quantify the underlying phenotype using cardiovascular magnetic resonance (CMR) quantitative deformation imaging and tissue characterisation."],["dc.identifier.doi","10.1016/j.ijcard.2019.06.036"],["dc.identifier.pmid","31300172"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62311"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1874-1754"],["dc.relation.issn","0167-5273"],["dc.title","Atrioventricular mechanical coupling and major adverse cardiac events in female patients following acute ST elevation myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019-11-01Journal Article [["dc.bibliographiccitation.firstpage","1262"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","European Heart Journal - Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","1270"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stulle, Alina"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.date.accessioned","2020-04-03T13:12:22Z"],["dc.date.available","2020-04-03T13:12:22Z"],["dc.date.issued","2019-11-01"],["dc.description.abstract","Cardiovascular magnetic resonance feature tracking (CMR-FT) global longitudinal strain (GLS) provides incremental prognostic value following acute myocardial infarction (AMI) but requires substantial post-processing. Alternatively, manual global long-axis strain (LAS) can be easily assessed from standard steady state free precession images. We aimed to define the prognostic value of LAS in a large multicentre study in patients following AMI."],["dc.identifier.doi","10.1093/ehjci/jez077"],["dc.identifier.pmid","31329854"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63616"],["dc.language.iso","en"],["dc.relation.eissn","2047-2412"],["dc.relation.issn","2047-2404"],["dc.relation.issn","2047-2412"],["dc.title","Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article [["dc.bibliographiccitation.firstpage","601"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Circulation Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","609"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Hoesch, Olga"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Thuy-Trang Nguyen, Thuy-Trang Nguyen"],["dc.contributor.author","Lauerer, Peter"],["dc.contributor.author","Rosenberg, Christina"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Unterberg, Christina"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Paul, Thomas"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Steinmetz, Michael"],["dc.date.accessioned","2018-11-07T09:38:08Z"],["dc.date.available","2018-11-07T09:38:08Z"],["dc.date.issued","2014"],["dc.description.abstract","Background-The classification of clinical severity of Ebstein anomaly still remains a challenge. The aim of this study was to focus on the interaction of the pathologically altered right heart with the anatomically-supposedly-normal left heart and to derive from cardiac magnetic resonance (CMR) a simple imaging measure for the clinical severity of Ebstein anomaly. Methods and Results-Twenty-five patients at a mean age of 26 +/- 14 years with unrepaired Ebstein anomaly were examined in a prospective study. Disease severity was classified using CMR volumes and functional measurements in comparison with heart failure markers from clinical data, ECG, laboratory and cardiopulmonary exercise testing, and echocardiography. All examinations were completed within 24 hours. A total right/left-volume index was defined from end-diastolic volume measurements in CMR: total right/left-volume index=(RA+aRV+fRV)/(LA+LV). Mean total right/left-volume index was 2.6 +/- 1.7 (normal values: 1.1 +/- 0.1). This new total right/left-volume index correlated with almost all clinically used biomarkers of heart failure: brain natriuretic peptide (r=0.691; P=0.0003), QRS (r=0.432; P=0.039), peak oxygen consumption/kg (r=-0.479; P=0.024), ventilatory response to carbon dioxide production at anaerobic threshold (r=0.426; P=0.048), the severity of tricuspid regurgitation (r=0.692; P=0.009), tricuspid valve offset (r=0.583; P=0.004), and tricuspid annular plane systolic excursion (r=0.554; P=0.006). Previously described severity indices ([RA+aRV]/[fRV+LA+LV]) and fRV/LV end-diastolic volume corresponded only to some parameters. Conclusions-In patients with Ebstein anomaly, the easily acquired index of right-sided to left-sided heart volumes from CMR correlated well with established heart failure markers. Our data suggest that the total right/left-volume index should be used as a new and simplified CMR measure, allowing more accurate assessment of disease severity than previously described scoring systems."],["dc.identifier.doi","10.1161/CIRCIMAGING.113.001467"],["dc.identifier.isi","000339172100006"],["dc.identifier.pmid","24807407"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33001"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.relation.issn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.title","The Total Right/Left-Volume Index: A New and Simplified Cardiac Magnetic Resonance Measure to Evaluate the Severity of Ebstein Anomaly of the Tricuspid Valve A Comparison With Heart Failure Markers From Various Modalities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.artnumber","e004077"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Circulation: Cardiovascular Imaging"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Hor, Kan N."],["dc.contributor.author","Beerbaum, Philipp"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.date.accessioned","2020-12-10T18:37:58Z"],["dc.date.available","2020-12-10T18:37:58Z"],["dc.date.issued","2016"],["dc.description.abstract","Heart failure-induced cardiovascular morbidity and mortality constitute a major health problem worldwide and result from diverse pathogeneses, including coronary artery disease, nonischemic cardiomyopathies, and arrhythmias. Assessment of cardiovascular performance is important for early diagnosis and accurate management of patients at risk of heart failure. During the past decade, cardiovascular magnetic resonance myocardial feature tracking has emerged as a useful tool for the quantitative evaluation of cardiovascular function. The method allows quantification of biatrial and biventricular mechanics from measures of deformation: strain, torsion, and dyssynchrony. The purpose of this article is to review the basic principles, clinical applications, accuracy, and reproducibility of cardiovascular magnetic resonance myocardial feature tracking, highlighting the prognostic implications. It will also provide an outlook on how this field might evolve in the future."],["dc.identifier.doi","10.1161/CIRCIMAGING.115.004077"],["dc.identifier.eissn","1942-0080"],["dc.identifier.isi","000374795700004"],["dc.identifier.issn","1941-9651"],["dc.identifier.pmid","27009468"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77155"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.relation.issn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.title","Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Aldehayat, Haneen"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2022-09-01T09:50:07Z"],["dc.date.available","2022-09-01T09:50:07Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n Feasibility of automated volume-derived cardiac functional evaluation has successfully been demonstrated using cardiovascular magnetic resonance (CMR) imaging. Notwithstanding, strain assessment has proven incremental value for cardiovascular risk stratification. Since introduction of deformation imaging to clinical practice has been complicated by time-consuming post-processing, we sought to investigate automation respectively. CMR data (n = 1095 patients) from two prospectively recruited acute myocardial infarction (AMI) populations with ST-elevation (STEMI) (AIDA STEMI n = 759) and non-STEMI (TATORT-NSTEMI n = 336) were analysed fully automated and manually on conventional cine sequences. LV function assessment included global longitudinal, circumferential, and radial strains (GLS/GCS/GRS). Agreements were assessed between automated and manual strain assessments. The former were assessed for major adverse cardiac event (MACE) prediction within 12 months following AMI. Manually and automated derived GLS showed the best and excellent agreement with an intraclass correlation coefficient (ICC) of 0.81. Agreement was good for GCS and poor for GRS. Amongst automated analyses, GLS (HR 1.12, 95% CI 1.08–1.16,\n p\n < 0.001) and GCS (HR 1.07, 95% CI 1.05–1.10,\n p\n < 0.001) best predicted MACE with similar diagnostic accuracy compared to manual analyses; area under the curve (AUC) for GLS (auto 0.691 vs. manual 0.693,\n p\n = 0.801) and GCS (auto 0.668 vs. manual 0.686,\n p\n = 0.425). Amongst automated functional analyses, GLS was the only independent predictor of MACE in multivariate analyses (HR 1.10, 95% CI 1.04–1.15,\n p\n < 0.001). Considering high agreement of automated GLS and equally high accuracy for risk prediction compared to the reference standard of manual analyses, automation may improve efficiency and aid in clinical routine implementation.\n \n Trial registration: ClinicalTrials.gov, NCT00712101 and NCT01612312."],["dc.description.sponsorship"," Deutsches Zentrum für Herz-Kreislaufforschung http://dx.doi.org/10.13039/100010447"],["dc.description.sponsorship"," Georg-August-Universität Göttingen 501100003385"],["dc.identifier.doi","10.1038/s41598-022-16228-w"],["dc.identifier.pii","16228"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113627"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","2045-2322"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","1540"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Diabetes"],["dc.bibliographiccitation.lastpage","1548"],["dc.bibliographiccitation.volume","69"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Navarra, Jenny-Lou"],["dc.contributor.author","Koschalka, Alexander"],["dc.contributor.author","Evertz, Ruben"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Gutberlet, Matthias"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2021-04-14T08:25:11Z"],["dc.date.available","2021-04-14T08:25:11Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.2337/db20-0001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81545"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1939-327X"],["dc.relation.issn","0012-1797"],["dc.title","Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment After Acute Myocardial Infarction in Patients With Type 2 Diabetes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation: Cardiovascular Imaging"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Stümpfig, Thomas"],["dc.contributor.author","Seehase, Matthias"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Kowallick, Johannes"],["dc.contributor.author","Müller, Matthias"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Uecker, Martin"],["dc.contributor.author","Paul, Thomas"],["dc.date.accessioned","2021-09-01T06:42:57Z"],["dc.date.available","2021-09-01T06:42:57Z"],["dc.date.issued","2021"],["dc.description.abstract","Background: Correction of tetralogy of Fallot (cTOF) often results in pulmonary valve pathology and right ventricular (RV) dysfunction. Reduced exercise capacity in cTOF patients cannot be explained by these findings alone. We aimed to explore why cTOF patients exhibit impaired exercise capacity with the aid of a comprehensive cardiopulmonary exercise testing (CPET) and real-time cardiovascular magnetic resonance exercise testing (CMR-ET) protocol. Methods: Thirty three cTOF patients and 35 matched healthy controls underwent CPET and CMR-ET in a prospective case-control study. Real-time steady-state free precession cine and phase-contrast sequences were obtained during incremental supine in-scanner cycling at 50, 70, and 90 W. RV and left ventricle (LV) volumes and pulmonary blood flow (Qp) were calculated. Differences of CPET and CMR-ET between cTOF versus controls and correlations between CPET and CMR-ET parameters in cTOF were evaluated statistically for all CMR exercise levels using Mann-Whitney U and Spearman rank-order correlation tests. Results: CPET capacity was significantly lower in cTOF than in controls. cTOF patients exhibited not only significantly reduced Qp and RV function but also lower LV function on CMR-ET. Higher CPET values in cTOF correlated with higher Qp (Qp 90 W versus carbon dioxide ventilatory equivalent %: R =−0.519, P <0.05), higher LV–end-diastolic volume indexed to body surface area (LV–end-diastolic volume indexed to body surface area at 50 W versus oxygen uptake in % at maximum exercise on CPET R =0.452, P <0.05), and change in LV ejection fraction (EF; LV-EF at 90 W versus Watt %: r =−0.463, P <0.05). No correlation was found with regard to RV-EF. Significant RV-LV interaction was observed during CMR-ET (RV-EF versus LV-EF at 50 W and 70 W: r =0.66, P <0.02 and r =0.52, P <0.05, respectively). Conclusions: Impaired exercise capacity in cTOF resulted from a reduction in not only RV, but also LV function. cTOF with good exercise capacity on CPET demonstrated higher LV reserve and pulmonary blood flow during incremental CMR-ET. Apart from RV parameters, CMR-ET–derived LV function could be a valuable tool to stratify cTOF patients for pulmonary valve replacement."],["dc.description.abstract","Background: Correction of tetralogy of Fallot (cTOF) often results in pulmonary valve pathology and right ventricular (RV) dysfunction. Reduced exercise capacity in cTOF patients cannot be explained by these findings alone. We aimed to explore why cTOF patients exhibit impaired exercise capacity with the aid of a comprehensive cardiopulmonary exercise testing (CPET) and real-time cardiovascular magnetic resonance exercise testing (CMR-ET) protocol. Methods: Thirty three cTOF patients and 35 matched healthy controls underwent CPET and CMR-ET in a prospective case-control study. Real-time steady-state free precession cine and phase-contrast sequences were obtained during incremental supine in-scanner cycling at 50, 70, and 90 W. RV and left ventricle (LV) volumes and pulmonary blood flow (Qp) were calculated. Differences of CPET and CMR-ET between cTOF versus controls and correlations between CPET and CMR-ET parameters in cTOF were evaluated statistically for all CMR exercise levels using Mann-Whitney U and Spearman rank-order correlation tests. Results: CPET capacity was significantly lower in cTOF than in controls. cTOF patients exhibited not only significantly reduced Qp and RV function but also lower LV function on CMR-ET. Higher CPET values in cTOF correlated with higher Qp (Qp 90 W versus carbon dioxide ventilatory equivalent %: R =−0.519, P <0.05), higher LV–end-diastolic volume indexed to body surface area (LV–end-diastolic volume indexed to body surface area at 50 W versus oxygen uptake in % at maximum exercise on CPET R =0.452, P <0.05), and change in LV ejection fraction (EF; LV-EF at 90 W versus Watt %: r =−0.463, P <0.05). No correlation was found with regard to RV-EF. Significant RV-LV interaction was observed during CMR-ET (RV-EF versus LV-EF at 50 W and 70 W: r =0.66, P <0.02 and r =0.52, P <0.05, respectively). Conclusions: Impaired exercise capacity in cTOF resulted from a reduction in not only RV, but also LV function. cTOF with good exercise capacity on CPET demonstrated higher LV reserve and pulmonary blood flow during incremental CMR-ET. Apart from RV parameters, CMR-ET–derived LV function could be a valuable tool to stratify cTOF patients for pulmonary valve replacement."],["dc.identifier.doi","10.1161/CIRCIMAGING.120.011823"],["dc.identifier.pmid","34384226"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89183"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/427"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.relation.workinggroup","RG Uecker"],["dc.title","Impaired Exercise Tolerance in Repaired Tetralogy of Fallot Is Associated With Impaired Biventricular Contractile Reserve: An Exercise-Stress Real-Time Cardiovascular Magnetic Resonance Study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article [["dc.bibliographiccitation.firstpage","357"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Magnetic Resonance in Medicine"],["dc.bibliographiccitation.lastpage","368"],["dc.bibliographiccitation.volume","85"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Zieschang, Victoria"],["dc.contributor.author","Erley, Jennifer"],["dc.contributor.author","Mahsa Zamani, Seyedeh"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2021-04-14T08:24:53Z"],["dc.date.available","2021-04-14T08:24:53Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1002/mrm.28437"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81452"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1522-2594"],["dc.relation.issn","0740-3194"],["dc.title","Head‐to‐head comparison of cardiovascular MR feature tracking cine versus acquisition‐based deformation strain imaging using myocardial tagging and strain encoding"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI