Options
Willig, Katrin I.
Loading...
Preferred name
Willig, Katrin I.
Official Name
Willig, Katrin I.
Alternative Name
Willig, K. I.
Willig, Katrin
Willig, K.
Now showing 1 - 10 of 35
2007Journal Article Research Paper [["dc.bibliographiccitation.firstpage","915"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","918"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Harke, Benjamin"],["dc.contributor.author","Medda, Rebecca"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:49:24Z"],["dc.date.available","2017-09-07T11:49:24Z"],["dc.date.issued","2007"],["dc.description.abstract","We report stimulated emission depletion (STED) fluorescence microscopy with continuous wave (CW) laser beams. Lateral fluorescence confinement from the scanning focal spot delivered a resolution of 29 - 60 nm in the focal plane, corresponding to a 5 - 8- fold improvement over the diffraction barrier. Axial spot confinement increased the axial resolution by 3.5-fold. We observed three-dimensional (3D) subdiffraction resolution in 3D image stacks. Viable for fluorophores with low triplet yield, the use of CW light sources greatly simplifies the implementation of this concept of far-field fluorescence nanoscopy."],["dc.identifier.doi","10.1038/NMETH1108"],["dc.identifier.gro","3143419"],["dc.identifier.isi","000250575700014"],["dc.identifier.pmid","17952088"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/931"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1548-7091"],["dc.title","STED microscopy with continuous wave beams"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","552"],["dc.bibliographiccitation.issue","7374"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","555"],["dc.bibliographiccitation.volume","479"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Risselada, H. Jelger"],["dc.contributor.author","Amin, Hayder"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hubrich, Barbara E."],["dc.contributor.author","Dier, Markus"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:43:16Z"],["dc.date.available","2017-09-07T11:43:16Z"],["dc.date.issued","2011"],["dc.description.abstract","Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases."],["dc.identifier.doi","10.1038/nature10545"],["dc.identifier.gro","3142626"],["dc.identifier.isi","000297285600056"],["dc.identifier.pmid","22020284"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0028-0836"],["dc.title","Membrane protein sequestering by ionic protein-lipid interactions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Review [["dc.bibliographiccitation.firstpage","178"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Quarterly Reviews of Biophysics"],["dc.bibliographiccitation.lastpage","243"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:44:24Z"],["dc.date.available","2017-09-07T11:44:24Z"],["dc.date.issued","2015"],["dc.description.abstract","The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (similar to 200nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or \"nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research."],["dc.identifier.doi","10.1017/S0033583514000146"],["dc.identifier.gro","3141910"],["dc.identifier.isi","000354386800002"],["dc.identifier.pmid","25998828"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2433"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1469-8994"],["dc.relation.issn","0033-5835"],["dc.title","Lens-based fluorescence nanoscopy"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","551"],["dc.bibliographiccitation.issue","6068"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","551"],["dc.bibliographiccitation.volume","335"],["dc.contributor.author","Berning, Sebastian"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Dibaj, Payam"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:49:00Z"],["dc.date.available","2017-09-07T11:49:00Z"],["dc.date.issued","2012"],["dc.description.abstract","We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time."],["dc.identifier.doi","10.1126/science.1215369"],["dc.identifier.gro","3142583"],["dc.identifier.isi","000299769200034"],["dc.identifier.pmid","22301313"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8950"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0036-8075"],["dc.title","Nanoscopy in a Living Mouse Brain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.artnumber","7368"],["dc.bibliographiccitation.firstpage","204"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","208"],["dc.bibliographiccitation.volume","478"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Testa, Ilaria"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Bock, Hannes"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:43:21Z"],["dc.date.available","2017-09-07T11:43:21Z"],["dc.date.issued","2011"],["dc.description.abstract","Lens-based optical microscopy failed to discern fluorescent features closer than 200 nm for decades, but the recent breaking of the diffraction resolution barrier by sequentially switching the fluorescence capability of adjacent features on and off is making nanoscale imaging routine. Reported fluorescence nanoscopy variants switch these features either with intense beams at defined positions or randomly, molecule by molecule. Here we demonstrate an optical nanoscopy that records raw data images from living cells and tissues with low levels of light. This advance has been facilitated by the generation of reversibly switchable enhanced green fluorescent protein (rsEGFP), a fluorescent protein that can be reversibly photoswitched more than a thousand times. Distributions of functional rsEGFP-fusion proteins in living bacteria and mammalian cells are imaged at <40-nanometre resolution. Dendritic spines in living brain slices are super-resolved with about a million times lower light intensities than before. The reversible switching also enables all-optical writing of features with subdiffraction size and spacings, which can be used for data storage."],["dc.identifier.doi","10.1038/nature10497"],["dc.identifier.gro","3142644"],["dc.identifier.isi","000295782800041"],["dc.identifier.pmid","21909116"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0028-0836"],["dc.title","Diffraction-unlimited all-optical imaging and writing with a photochromic GFP"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.artnumber","290"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Ohn, Tzu-Lun"],["dc.contributor.author","Frank, Thomas"],["dc.contributor.author","Jean, Philippe"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2018-04-23T11:48:23Z"],["dc.date.available","2018-04-23T11:48:23Z"],["dc.date.issued","2018"],["dc.description.abstract","Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20–330) and arrangement (mostly linear 70 nm × 100–600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs."],["dc.identifier.doi","10.1038/s41467-017-02612-y"],["dc.identifier.gro","3142361"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15588"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13498"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2007Journal Article Research Paper [["dc.bibliographiccitation.firstpage","135"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Neuroscience"],["dc.bibliographiccitation.lastpage","143"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Kellner, Robert R."],["dc.contributor.author","Baier, C. J."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Barrantes, F. J."],["dc.date.accessioned","2017-09-07T11:49:52Z"],["dc.date.available","2017-09-07T11:49:52Z"],["dc.date.issued","2007"],["dc.description.abstract","Acetylcholine receptor (AChR) supramolecular aggregates that have hitherto only been accessible to examination by electron microscopy were imaged with stimulated emission depletion (STED) fluorescence microscopy, providing resolution beyond limits of diffraction of classical widefield or confocal microscopes. We examined a Chinese hamster ovary cell liner CHO-K1/A5, that stably expresses adult murine AChR. Whereas confocal microscopy displays AChR clusters as diffraction-limited dots of similar to 200 nm diameter, STED microscopy yields nanoclusters; with a peak size distribution of similar to 55 rim. Utilizing this resolution, we show that cholesterol depletion by acute (30 min, 37 degrees C) exposure to methyl-beta-cyclodextrin alters the short and long range organization of AChR nanoclusters on the cell surface. In the short range, AChRs form larger nanoclusters, possibly related to the alteration of cholesterol-dependent protein-protein associations. Ripley's K-test on STED images reveals changes in nanocluster distribution on larger scales (0.5-3.5 mu m), which possibly are related to the abolition of cytoskeletal physical barriers preventing the lateral diffusion of AChR nanoclusters."],["dc.identifier.doi","10.1016/j.neuroscience.2006.08.071"],["dc.identifier.gro","3143549"],["dc.identifier.isi","000242860100015"],["dc.identifier.pmid","17049171"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1075"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0306-4522"],["dc.title","Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","80"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","84"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Watanabe, Shigeki"],["dc.contributor.author","Punge, Annedore"],["dc.contributor.author","Hollopeter, Gunther"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hobson, Robert John"],["dc.contributor.author","Davis, M. Wayne"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Jorgensen, Erik M."],["dc.date.accessioned","2017-09-07T11:45:06Z"],["dc.date.available","2017-09-07T11:45:06Z"],["dc.date.issued","2011"],["dc.description.abstract","A complete portrait of a cell requires a detailed description of its molecular topography: proteins must be linked to particular organelles. Immunocytochemical electron microscopy can reveal locations of proteins with nanometer resolution but is limited by the quality of fixation, the paucity of antibodies and the inaccessibility of antigens. Here we describe correlative fluorescence electron microscopy for the nanoscopic localization of proteins in electron micrographs. We tagged proteins with the fluorescent proteins Citrine or tdEos and expressed them in Caenorhabditis elegans, fixed the worms and embedded them in plastic. We imaged the tagged proteins from ultrathin sections using stimulated emission depletion (STED) microscopy or photoactivated localization microscopy (PALM). Fluorescence correlated with organelles imaged in electron micrographs from the same sections. We used these methods to localize histones, a mitochondrial protein and a presynaptic dense projection protein in electron micrographs."],["dc.identifier.doi","10.1038/NMETH.1537"],["dc.identifier.gro","3142809"],["dc.identifier.isi","000285712000027"],["dc.identifier.pmid","21102453"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/254"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1548-7091"],["dc.title","Protein localization in electron micrographs using fluorescence nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Journal Article [["dc.bibliographiccitation.firstpage","17a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","96"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hein, Birka"],["dc.contributor.author","Nägerl, U. Valentin"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-03-01T11:44:52Z"],["dc.date.available","2022-03-01T11:44:52Z"],["dc.date.issued","2009"],["dc.identifier.doi","10.1016/j.bpj.2008.12.988"],["dc.identifier.pii","S0006349508011788"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103148"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","STED Nanoscopy in Living Cells using Live Cell Compatible Markers"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","756"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.bibliographiccitation.lastpage","762"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Brakemann, Tanja"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:46:25Z"],["dc.date.available","2017-09-07T11:46:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Diffraction-unlimited far-field super-resolution fluorescence (nanoscopy) methods typically rely on transiently transferring fluorophores between two states, whereby this transfer is usually laid out as a switch. However, depending on whether this is induced in a spatially controlled manner using a pattern of light (coordinate-targeted) or stochastically on a single-molecule basis, specific requirements on the fluorophores are imposed. Therefore, the fluorophores are usually utilized just for one class of methods only. In this study we demonstrate that the reversibly switchable fluorescent protein Dreiklang enables live-cell recordings in both spatially controlled and stochastic modes. We show that the Dreiklang chromophore entails three different light-induced switching mechanisms, namely a reversible photochemical one, off-switching by stimulated emission, and a reversible transfer to a long-lived dark state from the S-1 state, all of which can be utilized to overcome the diffraction barrier. We also find that for the single-molecule-based stochastic GSDIM approach (ground-state depletion followed by individual molecule return), Dreiklang provides a larger number of on-off localization events as compared to its progenitor Citrine. Altogether, Dreiklang is a versatile probe for essentially all popular forms of live-cell fluorescence nanoscopy."],["dc.identifier.doi","10.1002/cphc.201301034"],["dc.identifier.gro","3142169"],["dc.identifier.isi","000332747500026"],["dc.identifier.pmid","24497300"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5299"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.title","Coordinate-Targeted and Coordinate-Stochastic Super-Resolution Microscopy with the Reversibly Switchable Fluorescent Protein Dreiklang"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS