Now showing 1 - 10 of 15
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","P09020"],["dc.bibliographiccitation.issue","09"],["dc.bibliographiccitation.journal","Journal of Instrumentation"],["dc.bibliographiccitation.lastpage","P09020"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Bisanz, T."],["dc.contributor.author","Jansen, H."],["dc.contributor.author","Arling, J.-H."],["dc.contributor.author","Bulgheroni, A."],["dc.contributor.author","Dreyling-Eschweiler, J."],["dc.contributor.author","Eichhorn, T."],["dc.contributor.author","Gregor, I.M."],["dc.contributor.author","Hamnett, P."],["dc.contributor.author","Kleinwort, C."],["dc.contributor.author","Morton, A."],["dc.contributor.author","Perrey, H."],["dc.contributor.author","Queitsch-Maitland, M."],["dc.contributor.author","Rossi, E."],["dc.contributor.author","Spannagel, S."],["dc.date.accessioned","2021-04-14T08:23:01Z"],["dc.date.available","2021-04-14T08:23:01Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1088/1748-0221/15/09/P09020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80774"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1748-0221"],["dc.title","EUTelescope: A modular reconstruction framework for beam telescope data"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-04-23T11:48:22Z"],["dc.date.available","2018-04-23T11:48:22Z"],["dc.date.issued","2018"],["dc.description.abstract","The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT nanoscopy have been developed from fluorescent proteins of the GFP superfamily. These proteins are bright, but exhibit several drawbacks such as relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching speed. Therefore, RSFPs from other origins with improved properties need to be explored. Here, we report the development of two RSFPs based on the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. LOV domains obtain their fluorescence by association with the abundant cellular cofactor flavin mononucleotide (FMN). Under illumination with blue and ultraviolet light, they undergo a photocycle, making these proteins inherently photoswitchable. Our first improved variant, rsLOV1, can be used for RESOLFT imaging, whereas rsLOV2 proved useful for STED nanoscopy of living cells with a resolution of down to 50 nm. In addition to their smaller size compared to GFP-related proteins (17 kDa instead of 27 kDa) and their usability at low pH, rsLOV1 and rsLOV2 exhibit faster switching kinetics, switching on and off 3 times faster than rsEGFP2, the fastest-switching RSFP reported to date. Therefore, LOV-domain-based RSFPs have potential for applications where the switching speed of GFP-based proteins is limiting."],["dc.identifier.doi","10.1038/s41598-018-19947-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13496"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.issn","2045-2322"],["dc.title","Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017-09-18Journal Article
    [["dc.bibliographiccitation.artnumber","11781"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific reports"],["dc.bibliographiccitation.lastpage","10"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Wegner, Waja"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","van Dort, Joris"],["dc.contributor.author","Mott, Alexander C."],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Willig, Katrin I."],["dc.date.accessioned","2019-07-09T11:44:29Z"],["dc.date.available","2019-07-09T11:44:29Z"],["dc.date.issued","2017-09-18"],["dc.description.abstract","The study of proteins in dendritic processes within the living brain is mainly hampered by the diffraction limit of light. STED microscopy is so far the only far-field light microscopy technique to overcome the diffraction limit and resolve dendritic spine plasticity at superresolution (nanoscopy) in the living mouse. After having tested several far-red fluorescent proteins in cell culture we report here STED microscopy of the far-red fluorescent protein mNeptune2, which showed best results for our application to superresolve actin filaments at a resolution of ~80 nm, and to observe morphological changes of actin in the cortex of a living mouse. We illustrate in vivo far-red neuronal actin imaging in the living mouse brain with superresolution for time periods of up to one hour. Actin was visualized by fusing mNeptune2 to the actin labels Lifeact or Actin-Chromobody. We evaluated the concentration dependent influence of both actin labels on the appearance of dendritic spines; spine number was significantly reduced at high expression levels whereas spine morphology was normal at low expression."],["dc.identifier.doi","10.1038/s41598-017-11827-4"],["dc.identifier.pmid","28924236"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14798"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59023"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","L01"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","L03"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Herholt, Alexander"],["dc.contributor.author","Rossner, Moritz J."],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:46:54Z"],["dc.date.available","2017-09-07T11:46:54Z"],["dc.date.issued","2014"],["dc.description.abstract","We demonstrate superresolution fluorescence microscopy (nanoscopy) of protein distributions in a mammalian brain in vivo. Stimulated emission depletion microscopy reveals the morphology of the filamentous actin in dendritic spines down to 40 mu m in the molecular layer of the visual cortex of an anesthetized mouse. Consecutive recordings at 43-70 nm resolution reveal dynamical changes in spine morphology."],["dc.identifier.doi","10.1016/j.bpj.2013.11.1119"],["dc.identifier.gro","3142199"],["dc.identifier.isi","000329407700001"],["dc.identifier.pmid","24411266"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11365"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5632"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Nanoscopy of Filamentous Actin in Cortical Dendrites of a Living Mouse"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017-04-18Journal Article
    [["dc.bibliographiccitation.artnumber","46492"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Winter, Franziska R."],["dc.contributor.author","Loidolt, Maria"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:38:46Z"],["dc.date.available","2018-01-17T13:38:46Z"],["dc.date.issued","2017-04-18"],["dc.description.abstract","The extension of fluorescence nanoscopy to larger numbers of molecular species concurrently visualized by distinct markers is of great importance for advanced biological applications. To date, up to four markers had been distinguished in STED experiments featuring comparatively elaborate imaging schemes and optical setups, and exploiting various properties of the fluorophores. Here we present a simple yet versatile STED design for multicolour imaging below the diffraction limit. A hyperspectral detection arrangement (hyperSTED) collects the fluorescence in four spectral channels, allowing the separation of four markers with only one excitation wavelength and a single STED beam. Unmixing of the different marker signals based on the simultaneous readout of all channels is performed with a non-negative matrix factorization algorithm. We illustrate the approach showing four-colour nanoscopy of fixed and living cellular samples."],["dc.identifier.doi","10.1038/srep46492"],["dc.identifier.pmid","28417977"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11725"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","2045-2322"],["dc.title","Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","122"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Nature Photonics"],["dc.bibliographiccitation.lastpage","128"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Sidenstein, Sven C."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:54:41Z"],["dc.date.available","2017-09-07T11:54:41Z"],["dc.date.issued","2016"],["dc.description.abstract","Far-field super-resolution fluorescence microscopy discerns fluorophores residing closer than the diffraction barrier by briefly transferring them in different (typically ON and OFF) states before detection. In coordinate-targeted super-resolution variants, such as stimulated emission depletion (STED) microscopy, this state difference is created by the intensity minima and maxima of an optical pattern, causing all fluorophores to assume the off state, for instance, except at the minima. Although strong spatial confinement of the on state enables high resolution, it also subjects the fluorophores to excess intensities and state cycles at the maxima. Here, we address these issues by driving the fluorophores into a second off state that is inert to the excess light. By using reversibly switchable fluorescent proteins as labels, our approach reduces bleaching and enhances resolution and contrast in live-cell STED microscopy. Using two or more transitions to off states is a useful strategy for augmenting the power of coordinate-targeted super-resolution microscopy."],["dc.identifier.doi","10.1038/NPHOTON.2015.266"],["dc.identifier.gro","3141737"],["dc.identifier.isi","000369321400015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/513"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: European Union [PIEF-GA-2011-299283]; Korber Foundation"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1749-4893"],["dc.relation.issn","1749-4885"],["dc.title","Coordinate-targeted fluorescence nanoscopy with multiple off states"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","962"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","967"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Gwosch, Klaus C."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:26:27Z"],["dc.date.available","2018-01-17T13:26:27Z"],["dc.date.issued","2018"],["dc.description.abstract","Bioluminescence imaging of single cells is often complicated by the requirement of exogenous luciferins that can be poorly cell-permeable or produce high background signal. Bacterial bioluminescence is unique in that it uses reduced flavin mononucleotide as a luciferin, which is abundant in all cells, making this system purely genetically encodable by the lux operon. Unfortunately, the use of bacterial bioluminescence has been limited by its low brightness compared with other luciferases. Here, we report the generation of an improved lux operon named ilux with an approximately sevenfold increased brightness when expressed in Escherichia coli; ilux can be used to image single E. coli cells with enhanced spatiotemporal resolution over several days. In addition, since only metabolically active cells produce bioluminescent signal, we show that ilux can be used to observe the effect of different antibiotics on cell viability on the single-cell level."],["dc.identifier.doi","10.1073/pnas.1715946115"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11712"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","Strongly enhanced bacterial bioluminescence with theiluxoperon for single-cell imaging"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Wegner, Waja"],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Willig, Katrin I."],["dc.date.accessioned","2022-04-01T10:00:22Z"],["dc.date.available","2022-04-01T10:00:22Z"],["dc.date.issued","2022"],["dc.description.abstract","Synaptic plasticity underlies long-lasting structural and functional changes to brain circuitry and its experience-dependent remodeling can be fundamentally enhanced by environmental enrichment. It is however unknown, whether and how the environmental enrichment alters the morphology and dynamics of individual synapses. Here, we present a virtually crosstalk-free two-color in vivo stimulated emission depletion (STED) microscope to simultaneously superresolve the dynamics of endogenous PSD95 of the post-synaptic density and spine geometry in the mouse cortex. In general, the spine head geometry and PSD95 assemblies were highly dynamic, their changes depended linearly on their original size but correlated only mildly. With environmental enrichment, the size distributions of PSD95 and spine head sizes were sharper than in controls, indicating that synaptic strength is set more uniformly. The topography of the PSD95 nanoorganization was more dynamic after environmental enrichment; changes in size were smaller but more correlated than in mice housed in standard cages. Thus, two-color in vivo time-lapse imaging of synaptic nanoorganization uncovers a unique synaptic nanoplasticity associated with the enhanced learning capabilities under environmental enrichment."],["dc.identifier.doi","10.7554/eLife.73603"],["dc.identifier.pmid","35195066"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105414"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/451"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2050-084X"],["dc.relation.workinggroup","RG Willig (Optical Nanoscopy in Neuroscience)"],["dc.relation.workinggroup","RG Wolf"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","577"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature communications"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Richardson, Douglas S."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Winter, Franziska R."],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:31:10Z"],["dc.date.available","2018-01-17T13:31:10Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence-based biosensors have become essential tools for modern biology, allowing real-time monitoring of biological processes within living cells. Intracellular fluorescent pH probes comprise one of the most widely used families of biosensors in microscopy. One key application of pH probes has been to monitor the acidification of vesicles during endocytosis, an essential function that aids in cargo sorting and degradation. Prior to the development of super-resolution fluorescence microscopy (nanoscopy), investigation of endosomal dynamics in live cells remained difficult as these structures lie at or below the ~250 nm diffraction limit of light microscopy. Therefore, to aid in investigations of pH dynamics during endocytosis at the nanoscale, we have specifically designed a family of ratiometric endosomal pH probes for use in live-cell STED nanoscopy.Ratiometric fluorescent pH probes are useful tools to monitor acidification of vesicles during endocytosis, but the size of vesicles is below the diffraction limit. Here the authors develop a family of ratiometric pH sensors for use in STED super-resolution microscopy, and optimize their delivery to endosomes."],["dc.identifier.doi","10.1038/s41467-017-00606-4"],["dc.identifier.pmid","28924139"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16496"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11717"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","SRpHi ratiometric pH biosensors for super-resolution microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","186a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","187a"],["dc.bibliographiccitation.volume","112"],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Sidenstein, Sven"],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Urban, Nicolai"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2022-03-01T11:44:58Z"],["dc.date.available","2022-03-01T11:44:58Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.bpj.2016.11.1034"],["dc.identifier.pii","S0006349516320641"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103178"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Coordinate-Targeted Fluorescence Nanoscopy with Multiple Off-States"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI