Options
Vukotic, Milena
Loading...
Preferred name
Vukotic, Milena
Official Name
Vukotic, Milena
Alternative Name
Vukotic, M.
Now showing 1 - 6 of 6
2016Journal Article [["dc.bibliographiccitation.firstpage","23769"],["dc.bibliographiccitation.issue","45"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","23778"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Müller, Tobias"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Hofmann, Kay"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc(1) complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc(1) complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins."],["dc.identifier.doi","10.1074/jbc.M116.734665"],["dc.identifier.eissn","1083-351X"],["dc.identifier.isi","000387884400036"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","27662906"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74539"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.title","Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","154"],["dc.bibliographiccitation.volume","191"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Piechura, Heike"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2010"],["dc.description.abstract","Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation."],["dc.identifier.doi","10.1083/jcb.201007026"],["dc.identifier.gro","3142844"],["dc.identifier.isi","000282648500014"],["dc.identifier.pmid","20876281"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/293"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","247"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","257"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Alkhaja, Alwaleed K."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Nikolov, Miroslav"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Ludewig, Fabian"],["dc.contributor.author","Schliebs, Wolfgang"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:49:01Z"],["dc.date.available","2017-09-07T11:49:01Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery."],["dc.identifier.doi","10.1091/mbc.E11-09-0774"],["dc.identifier.gro","3142588"],["dc.identifier.isi","000299108000002"],["dc.identifier.pmid","22114354"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8955"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-1524"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","806"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.lastpage","819"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Cheng, I-Fen"],["dc.contributor.author","Balleininger, Martina"],["dc.contributor.author","Vaz, Frederic M."],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.contributor.author","Hübscher, Daniela"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Wanders, Ronald J. A."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Guan, Kaomei"],["dc.date.accessioned","2017-09-07T11:47:37Z"],["dc.date.available","2017-09-07T11:47:37Z"],["dc.date.issued","2013"],["dc.description.abstract","Barth syndrome (BTHS) patients carrying mutations in tafazzin (TAZ1), which is involved in the final maturation of cardiolipin, present with dilated cardiomyopathy, skeletal myopathy, growth retardation and neutropenia. To study how mitochondrial function is impaired in BTHS patients, we generated induced pluripotent stem cells (iPSCs) to develop a novel and relevant human model system for BTHS. BTHS-iPSCs generated from dermal fibroblasts of three patients with different mutations in TAZ1 expressed pluripotency markers, and were able to differentiate into cells derived from all three germ layers both in vitro and in vivo. We used these cells to study the impact of tafazzin deficiency on mitochondria( oxidative phosphorylation. We found an impaired remodeling of cardiolipin, a dramatic decrease in basal oxygen consumption rate and in the maximal respiratory capacity in BTHS-iPSCs. Simultaneous measurement of extra-cellular acidification rate allowed us a thorough assessment of the metabolic deficiency in BTHS patients. Blue native gel analyses revealed that decreased respiration coincided with dramatic structural changes in respiratory chain supercomplexes leading to a massive increase in generation of reactive oxygen species. Our data demonstrate that BTHS-iPSCs are capable of modeling BTHS by recapitulating the disease phenotype and thus are important tools for studying the disease mechanism. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.scr.2013.05.005"],["dc.identifier.gro","3142297"],["dc.identifier.isi","000323586600012"],["dc.identifier.pmid","23792436"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11333"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6720"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A04: Patienten-spezifische induzierte pluripotente Stammzellen zur funktionellen Untersuchung von Ryanodinrezeptor-Mutationen"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.issn","1873-5061"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","336"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","347"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Wiese, Sebastian"],["dc.contributor.author","Vögtle, F. Nora"],["dc.contributor.author","Meisinger, Chris"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Zieseniss, Anke"],["dc.contributor.author","Katschinski, Doerthe M."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:48:56Z"],["dc.date.available","2017-09-07T11:48:56Z"],["dc.date.issued","2012"],["dc.description.abstract","The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants."],["dc.identifier.doi","10.1016/j.cmet.2012.01.016"],["dc.identifier.gro","3142565"],["dc.identifier.isi","000301701400014"],["dc.identifier.pmid","22342701"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8930"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1550-4131"],["dc.title","Rcf1 Mediates Cytochrome Oxidase Assembly and Respirasome Formation, Revealing Heterogeneity of the Enzyme Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2985"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","2992"],["dc.bibliographiccitation.volume","588"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Balleininger, Martina"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2018-11-07T09:36:26Z"],["dc.date.available","2018-11-07T09:36:26Z"],["dc.date.issued","2014"],["dc.description.abstract","The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc(1) complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker's yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [SFB 1002]"],["dc.identifier.doi","10.1016/j.febslet.2014.06.006"],["dc.identifier.isi","000340882900032"],["dc.identifier.pmid","24928273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32621"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/8"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","Najko"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.issn","1873-3468"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Aim24 stabilizes respiratory chain supercomplexes and is required for efficient respiration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS