Options
Schmidt, Bernhard
Loading...
Preferred name
Schmidt, Bernhard
Official Name
Schmidt, Bernhard
Alternative Name
Schmidt, B.
Main Affiliation
Now showing 1 - 2 of 2
1999Journal Article [["dc.bibliographiccitation.firstpage","2084"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.lastpage","2091"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Dierks, Thomas"],["dc.contributor.author","Lecca, M.Rita"],["dc.contributor.author","Schlotterhose, Petra"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Figura, Kurt von"],["dc.date.accessioned","2019-07-10T08:12:46Z"],["dc.date.available","2019-07-10T08:12:46Z"],["dc.date.issued","1999"],["dc.description.abstract","Sulfatases carry at their catalytic site a unique posttranslational modification, an a-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide. The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPp. motif was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR motif in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two motifs, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family."],["dc.format.mimetype","application/pdf"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3445"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61034"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","0261-4189"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","cysteine; endoplasmic reticulum; multiple sulfatase deficiency; protein modification; sulfatase"],["dc.subject.ddc","610"],["dc.title","Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2003Journal Article [["dc.bibliographiccitation.firstpage","435"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","444"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Dierks, Thomas"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Borissenko, Ljudmila V."],["dc.contributor.author","Peng, Jianhe"],["dc.contributor.author","Preusser, Andrea"],["dc.contributor.author","Mariappan, Malaiyalam"],["dc.contributor.author","Figura, Kurt von"],["dc.date.accessioned","2019-07-10T08:12:47Z"],["dc.date.available","2019-07-10T08:12:47Z"],["dc.date.issued","2003"],["dc.description.abstract","Cα-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven Mp. patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tri-partite domain structure."],["dc.format.mimetype","application/pdf"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3451"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61038"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.publisher","Cell Press"],["dc.relation.issn","0092-8674"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","multiple sulfatase deficiency; gene mutation; Cα-Formylglycine generating enzyme"],["dc.subject.ddc","610"],["dc.title","Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-Formylglycine generating enzyme"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details