Options
Kilisch, Markus
Loading...
Preferred name
Kilisch, Markus
Official Name
Kilisch, Markus
Alternative Name
Kilisch, M.
Now showing 1 - 10 of 13
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","eaaz1436"],["dc.bibliographiccitation.issue","647"],["dc.bibliographiccitation.journal","Science Signaling"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Menzel, Julia"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Tokar, Sergiy"],["dc.contributor.author","Ballone, Alice"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Mori, Mattia"],["dc.contributor.author","Ottmann, Christian"],["dc.contributor.author","Shattock, Michael J."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2021-04-14T08:32:51Z"],["dc.date.available","2021-04-14T08:32:51Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1126/scisignal.aaz1436"],["dc.identifier.pmid","32873725"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84038"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/68"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/368"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/126"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.eissn","1937-9145"],["dc.relation.issn","1945-0877"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.title","14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1480"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.lastpage","1502"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Isernhagen, Antje"],["dc.contributor.author","Malzahn, Doerthe"],["dc.contributor.author","Viktorova, Elena"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","von Bonin, Frederike"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Wermuth, Janne Marieke"],["dc.contributor.author","Walther, Neele"],["dc.contributor.author","Balavarca, Yesilda"],["dc.contributor.author","Stahl-Hennig, Christiane"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Walter, Lutz"],["dc.contributor.author","Bickeboeller, Heike"],["dc.contributor.author","Kube, Dieter"],["dc.contributor.author","Wulf, Gerald"],["dc.contributor.author","Dressel, Ralf"],["dc.date.accessioned","2018-11-07T09:49:36Z"],["dc.date.available","2018-11-07T09:49:36Z"],["dc.date.issued","2015"],["dc.description.abstract","The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n=452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR]=0.77, P=0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR]=0.57, P=0.0400) although homozygous carriers had an increased risk to experience this complication (OR=1.92, P=0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR=0.54, P=0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon- release, and faster co-stimulation of CD8(+) T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8(+) T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.15252/emmm.201505246"],["dc.identifier.isi","000364320100008"],["dc.identifier.pmid","26483398"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12462"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35542"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/127"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C05: Bedeutung von zellulären Immunreaktionen für das kardiale Remodeling und die Therapie der Herzinsuffizienz durch Stammzelltransplantation"],["dc.relation.issn","1757-4684"],["dc.relation.issn","1757-4676"],["dc.relation.workinggroup","RG Dressel"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biomolecules"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Götzke, Hansjörg"],["dc.contributor.author","Gere-Becker, Maja"],["dc.contributor.author","Crauel, Alexander"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Frey, Steffen"],["dc.date.accessioned","2021-04-14T08:29:47Z"],["dc.date.available","2021-04-14T08:29:47Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.3390/biom11020269"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82990"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2218-273X"],["dc.title","Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.artnumber","e16370"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Justa-Schuch, Daniela"],["dc.contributor.author","Silva-Garcia, Maria"],["dc.contributor.author","Pilla, Esther"],["dc.contributor.author","Engelke, Michael"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Möller, Ulrike"],["dc.contributor.author","Nakamura, Fumihiko"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Geiss-Friedlander, Ruth"],["dc.date.accessioned","2021-06-01T10:48:59Z"],["dc.date.available","2021-06-01T10:48:59Z"],["dc.date.issued","2016"],["dc.description.abstract","The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway."],["dc.description.abstract","Proteins are made up of building blocks called amino acids bonded together to form chain-like molecules. Around twenty different amino acids are used to make proteins, and enzymes called proteases can recognize specific pairs of amino acids in proteins and cut the bonds between them. Dipeptidylpeptidase 9 (or DPP9 for short) is a protease that removes two amino acids from the end of a protein, just as long the second amino acid is one of two specific kinds (namely, an alanine or a proline). The DPP9 protease influences a range of processes in the cell including cell death, signaling and survival. Indeed, mice born with an inactive version of DPP9 die shortly after birth, but it is not known why this happens. Justa-Schuch et al. investigated how the protease DPP9 controls processes inside cells and found an unexpected connection between DPP9 and another protein called Syk. The Syk protein is found in immune cells called B cells, and becomes highly activated whenever these cells are stimulated. Once activated Syk changes the activity of many proteins, affecting which genes are switched on and how the B cell moves and divides. By using DPP9 as a kind of bait, Justa-Schuch et al. found human proteins that bind to the protease. This search identified a protein called Filamin A that interacted with DPP9, placing DPP9 close to Syk, which also binds to Filamin A. Further experiments showed that when DPP9 was located close to Syk, it cut the end of Syk. This cut left the Syk protein with a different amino acid exposed at its end, which in turn made it susceptible to being broken down inside the cell. Justa-Schuch et al. went on to show that DPP9 preferentially cleaved the active form of Syk. Since cleaved Syk was subsequently broken down, DPP9 acts as a shut-off mechanism for Syk after the B cell has been stimulated. The findings show that DPP9 can influence how much and how long the B cell responds to stimulation. Inhibitors of DPP9 may therefore be useful for stabilizing Syk, which is known to stop specific tumors from growing. Future work will investigate the mechanisms that control how Filamin A, DPP9 and Syk interact."],["dc.identifier.doi","10.7554/eLife.16370"],["dc.identifier.isi","000385399800001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86123"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elife Sciences Publications Ltd"],["dc.relation.eissn","2050-084X"],["dc.relation.issn","2050-084X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2020Journal Article [["dc.bibliographiccitation.firstpage","jcs232835"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","133"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Mayer, Simone"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Roehse, Heiko"],["dc.contributor.author","Hentrich, Jennifer"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Papadopoulos, Theofilos"],["dc.date.accessioned","2020-12-10T18:41:54Z"],["dc.date.available","2020-12-10T18:41:54Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1242/jcs.232835"],["dc.identifier.eissn","1477-9137"],["dc.identifier.issn","0021-9533"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77720"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1850"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1859"],["dc.bibliographiccitation.volume","1853"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Liepold, Thomas"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Schulz, Christian"],["dc.date.accessioned","2017-09-07T11:43:40Z"],["dc.date.available","2017-09-07T11:43:40Z"],["dc.date.issued","2015"],["dc.description.abstract","The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (MC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor. (C) 2015 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2015.04.021"],["dc.identifier.gro","3141858"],["dc.identifier.isi","000356209600009"],["dc.identifier.pmid","25958336"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1856"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Götzke, Hansjörg"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Martínez-Carranza, Markel"],["dc.contributor.author","Sograte-Idrissi, Shama"],["dc.contributor.author","Rajavel, Abirami"],["dc.contributor.author","Schlichthaerle, Thomas"],["dc.contributor.author","Engels, Niklas"],["dc.contributor.author","Jungmann, Ralf"],["dc.contributor.author","Stenmark, Pål"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Frey, Steffen"],["dc.date.accessioned","2020-12-10T18:09:51Z"],["dc.date.available","2020-12-10T18:09:51Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41467-019-12301-7"],["dc.identifier.eissn","2041-1723"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16514"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73776"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","831"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","842"],["dc.bibliographiccitation.volume","129"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lytovchenko, Olga"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Bertinetti, Daniela"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:54:38Z"],["dc.date.available","2017-09-07T11:54:38Z"],["dc.date.issued","2016"],["dc.description.abstract","The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1242/jcs.180182"],["dc.identifier.gro","3141729"],["dc.identifier.isi","000370240900016"],["dc.identifier.pmid","26743085"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12874"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/424"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/100"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","886"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","898"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:47:45Z"],["dc.date.available","2017-09-07T11:47:45Z"],["dc.date.issued","2013"],["dc.description.abstract","The mitochondrial presequence translocase interacts with presequence-containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix-targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim-proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal-sensitive manner in a process that involves the IMS-domain of the Tim23 channel. The signal-driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor-associated form of the TIM23 complex required for matrix transport. The EMBO Journal (2013) 32, 886-898. doi:10.1038/emboj.2013.23; Published online 12 February 2013"],["dc.identifier.doi","10.1038/emboj.2013.23"],["dc.identifier.gro","3142372"],["dc.identifier.isi","000316463600013"],["dc.identifier.pmid","23403928"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7552"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0261-4189"],["dc.title","Signal recognition initiates reorganization of the presequence translocase during protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS