Options
Schuldiner, Maya
Loading...
Preferred name
Schuldiner, Maya
Official Name
Schuldiner, Maya
Alternative Name
Schuldiner, M.
Now showing 1 - 10 of 32
2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2797"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","2811"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Cohen, Nir"],["dc.contributor.author","Gabrielli, Natalia"],["dc.contributor.author","Manenschijn, Hetty"],["dc.contributor.author","Welsch, Sonja"],["dc.contributor.author","Chlanda, Petr"],["dc.contributor.author","Kukulski, Wanda"],["dc.contributor.author","Patil, Kiran R."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Briggs, John A. G."],["dc.date.accessioned","2022-07-04T14:43:24Z"],["dc.date.available","2022-07-04T14:43:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called \"MultiCLEM,\" allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique."],["dc.identifier.doi","10.1083/jcb.201812081"],["dc.identifier.pmid","31289126"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112384"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/77"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","477"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Yeast"],["dc.bibliographiccitation.lastpage","483"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-04T13:20:33Z"],["dc.date.available","2022-07-04T13:20:33Z"],["dc.date.issued","2018"],["dc.description.abstract","In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice ('hits') are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen - all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community."],["dc.identifier.doi","10.1002/yea.3312"],["dc.identifier.pmid","29574976"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112377"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/26"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1097-0061"],["dc.relation.issn","0749-503X"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","282"],["dc.bibliographiccitation.volume","217"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Mari, Muriel"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Rosenfeld-Gur, Eden"],["dc.contributor.author","Moldavski, Ofer"],["dc.contributor.author","Castro, Inês G."],["dc.contributor.author","Soni, Krishnakant G."],["dc.contributor.author","Harpaz, Nofar"],["dc.contributor.author","Levine, Tim P"],["dc.contributor.author","Futerman, Anthony H."],["dc.contributor.author","Reggiori, Fulvio"],["dc.contributor.author","Bankaitis, Vytas A."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-04T12:38:21Z"],["dc.date.available","2022-07-04T12:38:21Z"],["dc.date.issued","2018"],["dc.description.abstract","Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells."],["dc.identifier.doi","10.1083/jcb.201704122"],["dc.identifier.pmid","29187527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112374"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/17"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Chattopadhyay, Shiladitya"],["dc.contributor.author","Garcia-Martinez, Jose"],["dc.contributor.author","Haimovich, Gal"],["dc.contributor.author","Fischer, Jonathan"],["dc.contributor.author","Khwaja, Aya"],["dc.contributor.author","Barkai, Oren"],["dc.contributor.author","Chuartzman, Silvia Gabriela"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Elran, Ron"],["dc.contributor.author","Rosenberg, Miriam I."],["dc.contributor.author","Choder, Mordechai"],["dc.date.accessioned","2022-12-01T08:30:50Z"],["dc.date.available","2022-12-01T08:30:50Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5’ to 3’ exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting\n KAP120\n or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate."],["dc.identifier.doi","10.1038/s41467-022-34417-z"],["dc.identifier.pii","34417"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117992"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","2041-1723"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Overview [["dc.bibliographiccitation.firstpage","1287"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Scorrano, Luca"],["dc.contributor.author","De Matteis, Maria Antonietta"],["dc.contributor.author","Emr, Scott"],["dc.contributor.author","Giordano, Francesca"],["dc.contributor.author","Hajnóczky, György"],["dc.contributor.author","Kornmann, Benoît"],["dc.contributor.author","Lackner, Laura L."],["dc.contributor.author","Levine, Tim P."],["dc.contributor.author","Pellegrini, Luca"],["dc.contributor.author","Reinisch, Karin"],["dc.contributor.author","Rizzuto, Rosario"],["dc.contributor.author","Simmen, Thomas"],["dc.contributor.author","Stenmark, Harald"],["dc.contributor.author","Ungermann, Christian"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:29:57Z"],["dc.date.available","2022-07-11T15:29:57Z"],["dc.date.issued","2019"],["dc.description.abstract","Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research."],["dc.identifier.doi","10.1038/s41467-019-09253-3"],["dc.identifier.pmid","30894536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112468"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/84"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Coming together to define membrane contact sites"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","173.e5"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","191.e5"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Chao, Jesse T."],["dc.contributor.author","Piña, Francisco"],["dc.contributor.author","Onishi, Masayuki"],["dc.contributor.author","Cohen, Yifat"],["dc.contributor.author","Lai, Ya-Shiuan"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Niwa, Maho"],["dc.date.accessioned","2022-07-06T12:16:31Z"],["dc.date.available","2022-07-06T12:16:31Z"],["dc.date.issued","2019"],["dc.description.abstract","During cell division, the inheritance of a functional endoplasmic reticulum (ER) is ensured by the endoplasmic reticulum stress surveillance (ERSU) pathway. Activation of ERSU causes the septin ring to mislocalize, which blocks ER inheritance and cytokinesis. Here, we uncover that the septin ring in fact translocates to previously utilized cell division sites called cytokinetic remnants (CRMs). This unconventional translocation requires Nba1, a negative polarity regulator that normally prevents repolarization and re-budding at CRMs. Furthermore, septin ring translocation relies on the recruitment and activation of a key ERSU component Slt2 by Bem1, without activating Cdc42. Failure to transfer all septin subunits to CRMs delays the cell's ability to re-enter the cell cycle when ER homeostasis is restored and hinders cell growth after ER stress recovery. Thus, these deliberate but unprecedented rearrangements of cell polarity factors during ER stress safeguard cell survival and the timely cell-cycle re-entry upon ER stress recovery."],["dc.identifier.doi","10.1016/j.devcel.2019.08.017"],["dc.identifier.pmid","31564614"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112400"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/94"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1878-1551"],["dc.relation.issn","1534-5807"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Overview [["dc.bibliographiccitation.firstpage","483"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Reviews. Molecular Cell Biology"],["dc.bibliographiccitation.lastpage","484"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Bohnert, Maria"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:20:59Z"],["dc.date.available","2022-07-11T15:20:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41580-018-0022-1"],["dc.identifier.pmid","29765158"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112466"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/88"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1471-0080"],["dc.relation.issn","1471-0072"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.title","Stepping outside the comfort zone of membrane contact site research"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017-12-15Journal Article Overview [["dc.bibliographiccitation.firstpage","4079"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","4085"],["dc.bibliographiccitation.volume","130"],["dc.contributor.author","Aviram, Naama"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:07:56Z"],["dc.date.available","2022-07-11T15:07:56Z"],["dc.date.issued","2017-12-15"],["dc.description.abstract","The evolutionary emergence of organelles was a defining process in diversifying biochemical reactions within the cell and enabling multicellularity. However, compartmentalization also imposed a great challenge-the need to import proteins synthesized in the cytosol into their respective sites of function. For example, one-third of all genes encode for proteins that must be targeted and translocated into the endoplasmic reticulum (ER), which serves as the entry site to the majority of endomembrane compartments. Decades of research have set down the fundamental principles of how proteins get from the cytosol into the ER, and recent studies have brought forward new pathways and additional regulators enabling better definition of the rules governing substrate recognition. In this Cell Science at a Glance article and the accompanying poster, we give an overview of our current understanding of the multifaceted and regulated processes of protein targeting and translocation to the ER."],["dc.identifier.doi","10.1242/jcs.204396"],["dc.identifier.pmid","29246967"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112463"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/19"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Targeting and translocation of proteins to the endoplasmic reticulum at a glance"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Overview [["dc.bibliographiccitation.firstpage","395"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","409"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Shai, Nadav"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-11T15:02:22Z"],["dc.date.available","2022-07-11T15:02:22Z"],["dc.date.issued","2016"],["dc.description.abstract","Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular \"tethers.\" With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development."],["dc.identifier.doi","10.1016/j.devcel.2016.10.022"],["dc.identifier.pmid","27875684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112461"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/4"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1878-1551"],["dc.relation.issn","1534-5807"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC