Now showing 1 - 5 of 5
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.firstpage","199"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Trends in Biochemical Sciences"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","43"],["dc.contributor.author","Castro, Inês Gomes"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-11T15:22:45Z"],["dc.date.available","2022-07-11T15:22:45Z"],["dc.date.issued","2018"],["dc.description.abstract","The eukaryotic cell is organized as a complex grid system where membrane-bound cellular compartments, organelles, must be localized to the right place at the right time. One way to facilitate correct organelle localization and organelle cooperation is through membrane contact sites, areas of close proximity between two organelles that are bridged by protein/lipid complexes. It is now clear that all organelles physically contact each other. The main focus of this review is contact sites of peroxisomes, central metabolic hubs whose defects lead to a variety of diseases. New peroxisome contacts, their tethering complexes and functions have been recently discovered. However, if and how peroxisome contacts contribute to the development of peroxisome-related diseases is still a mystery."],["dc.identifier.doi","10.1016/j.tibs.2018.01.001"],["dc.identifier.pmid","29395653"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112467"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/89"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","0968-0004"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Mind the Organelle Gap - Peroxisome Contact Sites in Disease"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","130"],["dc.bibliographiccitation.journal","F1000Research"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Gabay-Maskit, Shiran"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-04T13:17:12Z"],["dc.date.available","2022-07-04T13:17:12Z"],["dc.date.issued","2018"],["dc.description.abstract","Malate dehydrogenases (Mdhs) reversibly convert malate to oxaloacetate and serve as important enzymes in several metabolic pathways. In the yeast Saccharomyces cerevisiae there are three Mdh isozymes, localized to different compartments in the cell. In order to identify specifically the Mdh2 isozyme, GenScript USA produced three different antibodies that we further tested by western blot. All three antibodies recognized the S. cerevisiae Mdh2 with different background and specificity properties. One of the antibodies had a relatively low background and high specificity and thus can be used for specific identification of Mdh2 in various experimental settings."],["dc.identifier.doi","10.12688/f1000research.13396.2"],["dc.identifier.pmid","29568493"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112376"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/21"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","2046-1402"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Validation of a yeast malate dehydrogenase 2 (Mdh2) antibody tested for use in western blots"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Book Chapter
    [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.lastpage","66"],["dc.bibliographiccitation.volume","89"],["dc.contributor.author","Yifrach, Eden"],["dc.contributor.author","Fischer, Sven"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.contributor.author","Warscheid, Bettina"],["dc.date.accessioned","2022-07-11T15:16:41Z"],["dc.date.available","2022-07-11T15:16:41Z"],["dc.date.issued","2018"],["dc.description.abstract","The current view on peroxisomes has changed dramatically from being human cell oddities to vital organelles that host several key metabolic pathways. To fulfil over 50 different enzymatic functions, human peroxisomes host either unique peroxisomal proteins or dual-localized proteins. The identification and characterization of the complete peroxisomal proteome in humans is important for diagnosis and treatment of patients with peroxisomal disorders as well as for uncovering novel peroxisomal functions and regulatory modules. Hence, here we compiled a comprehensive list of mammalian peroxisomal and peroxisome-associated proteins by curating results of several quantitative and non-quantitative proteomic studies together with entries in the UniProtKB and Compartments knowledge channel databases. Our analysis gives a holistic view on the mammalian peroxisomal proteome and brings to light potential new peroxisomal and peroxisome-associated proteins. We believe that this dataset, represents a valuable surrogate map of the human peroxisomal proteome."],["dc.identifier.doi","10.1007/978-981-13-2233-4_2"],["dc.identifier.pmid","30378018"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112465"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/43"],["dc.language.iso","en"],["dc.publisher","Springer"],["dc.publisher.place","Singapore"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.isbn","978-981-13-2232-7"],["dc.relation.isbn","978-981-13-2233-4"],["dc.relation.ispartof","Proteomics of Peroxisomes. Identifying Novel Functions and Regulatory Networks"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Defining the Mammalian Peroxisomal Proteome"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1761"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Shai, Nadav"],["dc.contributor.author","Yifrach, Eden"],["dc.contributor.author","van Roermund, Carlo W. T."],["dc.contributor.author","Cohen, Nir"],["dc.contributor.author","Bibi, Chen"],["dc.contributor.author","IJlst, Lodewijk"],["dc.contributor.author","Cavellini, Laetitia"],["dc.contributor.author","Meurisse, Julie"],["dc.contributor.author","Schuster, Ramona"],["dc.contributor.author","Zada, Lior"],["dc.contributor.author","Mari, Muriel C."],["dc.contributor.author","Reggiori, Fulvio M."],["dc.contributor.author","Hughes, Adam L."],["dc.contributor.author","Escobar-Henriques, Mafalda"],["dc.contributor.author","Cohen, Mickael M."],["dc.contributor.author","Waterham, Hans R."],["dc.contributor.author","Wanders, Ronald J. A."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-04T13:23:53Z"],["dc.date.available","2022-07-04T13:23:53Z"],["dc.date.issued","2018"],["dc.description.abstract","The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in β-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease."],["dc.identifier.doi","10.1038/s41467-018-03957-8"],["dc.identifier.pmid","29720625"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112378"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/29"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","617"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","622"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Yofe, Ido"],["dc.contributor.author","Sass, Ehud"],["dc.contributor.author","Stynen, Bram"],["dc.contributor.author","Davidi, Dan"],["dc.contributor.author","Natarajan, Janani"],["dc.contributor.author","Ben-Menachem, Reut"],["dc.contributor.author","Avihou, Zohar"],["dc.contributor.author","Goldman, Omer"],["dc.contributor.author","Harpaz, Nofar"],["dc.contributor.author","Chuartzman, Silvia"],["dc.contributor.author","Kniazev, Kiril"],["dc.contributor.author","Knoblach, Barbara"],["dc.contributor.author","Laborenz, Janina"],["dc.contributor.author","Boos, Felix"],["dc.contributor.author","Kowarzyk, Jacqueline"],["dc.contributor.author","Ben-Dor, Shifra"],["dc.contributor.author","Zalckvar, Einat"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rachubinski, Richard A."],["dc.contributor.author","Pines, Ophry"],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Michnick, Stephen W."],["dc.contributor.author","Levy, Emmanuel D."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-04T13:38:18Z"],["dc.date.available","2022-07-04T13:38:18Z"],["dc.date.issued","2018"],["dc.description.abstract","Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions."],["dc.identifier.doi","10.1038/s41592-018-0044-9"],["dc.identifier.pmid","29988094"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112380"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/35"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Genome-wide SWAp-Tag yeast libraries for proteome exploration"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC