Now showing 1 - 10 of 37
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","443"],["dc.bibliographiccitation.journal","Molecular Therapy - Nucleic Acids"],["dc.bibliographiccitation.lastpage","452"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Hoffmann, Daniel B."],["dc.contributor.author","Gruber, Jens"],["dc.contributor.author","Böker, Kai O."],["dc.contributor.author","Deppe, Delia"],["dc.contributor.author","Sehmisch, Stephan"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Lemus-Diaz, Nicolas"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Schneider, Stefan"],["dc.date.accessioned","2019-07-09T11:45:51Z"],["dc.date.available","2019-07-09T11:45:51Z"],["dc.date.issued","2018"],["dc.description.abstract","Rebalancing of the RANKL/OPG system seems to be an effective treatment strategy in postmenopausal osteoporosis. Here, we evaluate the knockdown of RANKL by in-vivo-delivered siRNA in a rat model of osteoporosis. Virus-like-particles (VLPs) derived from polyoma JC virus were used for delivering RANKL siRNA in ovariectomized (OVX) rats. 48 rats were ovariectomized and treated with either 17β-estradiol (E2), VLPs containing RANKL siRNA (siRANKL), or VLPs containing non-cognate siRNA (siCtrl). All OVX groups were subdivided into the prophylaxis group (PG) and the therapy group (TG). The PG received treatment directly after being OVX for 10 weeks. The TG received treatment 5 weeks after being OVX for 5 weeks. Rats were sacrificed 10 weeks after being OVX. Bone and blood samples were analyzed. E2 and siRANKL showed a significant knockdown of RANKL mRNA. A protein knockdown was observed with E2 and siRANKL in the TG but not in the PG. No distinct improvements in biomechanical and morphological properties of the bones were observed after siRANKL treatment. In the PG, E2 protected the bone structure. We demonstrated successful mRNA and protein knockdown by VLP-mediated RNAi in vivo. Knockdown of membranous RANKL did not result in significant improvements of bone properties in this model of early-stage postmenopausal osteoporosis."],["dc.identifier.doi","10.1016/j.omtn.2018.06.001"],["dc.identifier.pmid","30195781"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15329"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59322"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2162-2531"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.title","Effects of RANKL Knockdown by Virus-like Particle-Mediated RNAi in a Rat Model of Osteoporosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","187"],["dc.bibliographiccitation.journal","Bone"],["dc.bibliographiccitation.lastpage","194"],["dc.bibliographiccitation.volume","64"],["dc.contributor.author","Stuermer, Ewa Klara"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Sehmisch, Stephan"],["dc.contributor.author","Tezval, Mohammad"],["dc.contributor.author","Dullin, Christian"],["dc.contributor.author","Schaefer, Nadine"],["dc.contributor.author","Hallecker, Jan"],["dc.contributor.author","Stuermer, Klaus-Michael"],["dc.date.accessioned","2018-11-07T09:38:39Z"],["dc.date.available","2018-11-07T09:38:39Z"],["dc.date.issued","2014"],["dc.description.abstract","Current osteoporosis therapies aim to delay bone destruction and have additional anabolic effects. While they have demonstrated some positive effects on bone healing, more progress is needed in this area. This study used the well-known osteoporotic agents estrogen (E) and raloxifene (R) in conjunction with biomechanical whole body vibration (WBV) at a frequency of 70 Hz twice daily for six weeks to stimulate bone healing. Eighty-four 3-month old female Sprague-Dawley rats (12 per group) were bilaterally ovariectomized to develop osteopenia within eight weeks. Osteotomy of the metaphyseal tibiae was performed and fracture healing was then studied using mechanical tests, histomorphometry, computed tomography (mu CT), and gene analysis. We found that E and R improved the structure of osteopenic bones as did WBV alone, although significant levels for WBV were seldom reached. Combination treatments significantly enhanced stiffness (R + WBV; p < 0.05), endosteal bone (R + WBV; p < 0.01), and trabecular density (E + WBV; p < 0.05, R + WBV; p < 0.05). In addition, the expression of osteoclast-specific Trap was significantly reduced after treatment with E, R, or their combination with WBV (p < 0.01). The effects were additive and not inhibitory, leading us to conclude that the combined applications of WBV with E or R may improve the healing of osteopenic bones. The therapies studied are all currently approved for human use, suggesting ready applicability to clinical practice. To better understand the effects of WBV on osteopenic bones, the ideal vibration regime will require further study. (C) 2014 Elsevier Inc. All rights reserved."],["dc.description.sponsorship","German Research Foundation (DFG) [STU 478/3-1]"],["dc.identifier.doi","10.1016/j.bone.2014.04.008"],["dc.identifier.isi","337011500026"],["dc.identifier.pmid","24735975"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33112"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Inc"],["dc.relation.issn","1873-2763"],["dc.relation.issn","8756-3282"],["dc.title","Whole body vibration during fracture healing intensifies the effects of estradiol and raloxifene in estrogen-deficient rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","408"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Calcified Tissue International"],["dc.bibliographiccitation.lastpage","422"],["dc.bibliographiccitation.volume","99"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Hoffmann, D. B."],["dc.contributor.author","Nuehnen, V."],["dc.contributor.author","Stueber, H."],["dc.contributor.author","Wassmann, M."],["dc.contributor.author","Wicke, Michael"],["dc.contributor.author","Tezval, Mohammed"],["dc.contributor.author","Stuermer, Klaus-Michael"],["dc.contributor.author","Sehmisch, Stefan"],["dc.date.accessioned","2018-11-07T10:08:11Z"],["dc.date.available","2018-11-07T10:08:11Z"],["dc.date.issued","2016"],["dc.description.abstract","The aim of the present study was to study the effect of combined therapy of teriparatide (PTH) or strontium ranelate (SR) with whole-body vibration (WBV) on bone healing and muscle properties in an osteopenic rat model. Seventy-two rats (3 months old) were bilaterally ovariectomized (Ovx), and 12 rats were left intact (Non-Ovx). After 8 weeks, bilateral transverse osteotomy was performed at the tibia metaphysis in all rats. Thereafter, Ovx rats were divided into six groups (n = 12): (1) Ovx-no treatment, (2) Ovx + vibration (Vib), (3) SR, (4) SR + Vib, (5) PTH, and (6) PTH + Vib. PTH (40 mu g/kg BW sc. 5x/week) and SR (613 mg/kg BW in food daily) were applied on the day of ovariectomy, vibration treatments 5 days later (vertical, 70 Hz, 0.5 mm, 2x/day for 15 min) for up to 6 weeks. In the WBV + SR group, the callus density, trabecular number, and Alp and Oc gene expression were decreased compared to SR alone. In the WBV + PTH group, the cortical and callus widths, biomechanical properties, Opg gene expression, and Opg/Rankl ratio were increased; the cortical and callus densities were decreased compared to PTH alone. A case of non-bridging was found in both vibrated groups. Vibration alone did not change the bone parameters; PTH possessed a stronger effect than SR therapy. In muscles, combined therapies improved the fiber size of Ovx rats. WBV could be applied alone or in combination with anti-osteoporosis drug therapy to improve muscle tissue. However, in patients with fractures, anti-osteoporosis treatments and the application of vibration could have an adverse effect on bone healing."],["dc.description.sponsorship","German Research Foundation (DFG) [SE 1966/5-1]"],["dc.identifier.doi","10.1007/s00223-016-0156-0"],["dc.identifier.isi","000382633200009"],["dc.identifier.pmid","27272029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39422"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1432-0827"],["dc.relation.issn","0171-967X"],["dc.title","The Effect of Vibration Treatments Combined with Teriparatide or Strontium Ranelate on Bone Healing and Muscle in Ovariectomized Rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Journal of Endocrinological Investigation"],["dc.contributor.author","Komrakova, M."],["dc.contributor.author","BĂĽchler, G."],["dc.contributor.author","Böker, K. O."],["dc.contributor.author","Lehmann, W."],["dc.contributor.author","Schilling, A. F."],["dc.contributor.author","Roch, P. J."],["dc.contributor.author","Taudien, S."],["dc.contributor.author","Hoffmann, D. B."],["dc.contributor.author","Sehmisch, S."],["dc.date.accessioned","2022-09-01T09:49:26Z"],["dc.date.available","2022-09-01T09:49:26Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n Purpose\n Enobosarm (EN), a selective androgen receptor modulator and raloxifene (RAL), a selective estrogen receptor modulator, have been shown to improve bone tissue in osteoporotic males. The present study evaluated the effects of a combination therapy of EN and RAL on bone properties in orchiectomized rats compared to the respective single treatments.\n \n \n Methods\n Eight-month-old male Sprague–Dawley rats were either left intact (Non-Orx) or orchiectomized (Orx). The Orx rats were divided into four groups (n = 15 each): 1) Orx, 2) EN treatment (Orx + EN), 3) RAL treatment (Orx + RAL), 4) combined treatment (Orx + EN + RAL). EN and RAL (0.4 mg and 7 mg/kg body weight/day) were applied immediately after Orx with a soy-free pelleted diet for up to 18 weeks. The lumbar spine and femora were examined by micro-CT, biomechanical, histomorphological, ashing, and gene expression analyses.\n \n \n Results\n EN exhibited an anabolic effect on bone, improving some of its parameters in Orx rats, but did not affect biomechanical properties. RAL exhibited antiresorptive activity, maintaining the biomechanical and trabecular parameters of Orx rats at the levels of Non-Orx rats. EN + RAL exerted a stronger effect than the single treatments, improving most of the bone parameters. Liver weight increased after all treatments; the kidney, prostate, and levator ani muscle weights increased after EN and EN + RAL treatments. BW was reduced due to a decreased food intake in the Orx + RAL group and due a reduced visceral fat weight in the Orx + EN + RAL group.\n \n \n Conclusion\n The EN + RAL treatment appeared to be promising in preventing male osteoporosis, but given the observed side effects on liver, kidney, and prostate weights, it requires further investigation."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Georg-August-Universität Göttingen 501100003385"],["dc.identifier.doi","10.1007/s40618-022-01865-9"],["dc.identifier.pii","1865"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113421"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1720-8386"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","A combined treatment with selective androgen and estrogen receptor modulators prevents bone loss in orchiectomized rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Endocrinology"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Saul, Dominik"],["dc.contributor.author","Hohl, Friederike Eva"],["dc.contributor.author","Franz, Max Konrad"],["dc.contributor.author","Meyer, Ilka"],["dc.contributor.author","Taudien, Stefan"],["dc.contributor.author","Roch, Paul Jonathan"],["dc.contributor.author","Sehmisch, Stephan"],["dc.contributor.author","Komrakova, Marina"],["dc.date.accessioned","2021-08-12T07:45:42Z"],["dc.date.available","2021-08-12T07:45:42Z"],["dc.date.issued","2021"],["dc.description.abstract","Background In previous studies, we reported the beneficial impact of two lipoxygenase-inhibitors, Baicalein and Zileuton, on osteoporotic bone in a postmenopausal rat model. Whereas subcutaneous Baicalein predominantly improved cortical bone, Zileuton enhanced vertebral and femoral trabecular bone. In this study, we aimed to reveal whether the oral administration of Baicalein caused similar effects on bone and whether a combined administration of Baicalein and Zileuton could act synergistically to ameliorate the formerly reported effects in the musculoskeletal system. Methods We treated ovariectomized (OVX) female Sprague-Dawley rats either with Baicalein (10mg/kg BW), Zileuton (10mg/kg BW) or a combination of both (each 10mg/kg BW) for 13 weeks and compared with untreated OVX and NON-OVX groups (n=12-16 rats per group). Lumbar vertebral bodies and femora were analyzed. Tibiae were osteotomized, plate-stabilized (at week 8 after OVX) and likewise analyzed by biomechanical, histological, micro-computed tomographical and ashing tests. The skeletal muscle structure was analyzed. Results Oral administration of Baicalein did not confirm the reported favorable cortical effects in neither vertebra nor femur. Zileuton showed a beneficial effect on trabecular vertebra, while the femur was negatively affected. Callus formation was enhanced by all treatments; however, its density and biomechanical properties were unaltered. Lipoxygenase inhibition did not show a beneficial effect on skeletal muscle. The combination therapy did not ameliorate OVX-induced osteoporosis but induced even more bone loss. Conclusions The preventive anti-osteoporotic treatments with two lipoxygenase inhibitors applied either alone or in combination showed no benefit for the musculoskeletal system in estrogen deficient rats."],["dc.description.abstract","Background In previous studies, we reported the beneficial impact of two lipoxygenase-inhibitors, Baicalein and Zileuton, on osteoporotic bone in a postmenopausal rat model. Whereas subcutaneous Baicalein predominantly improved cortical bone, Zileuton enhanced vertebral and femoral trabecular bone. In this study, we aimed to reveal whether the oral administration of Baicalein caused similar effects on bone and whether a combined administration of Baicalein and Zileuton could act synergistically to ameliorate the formerly reported effects in the musculoskeletal system. Methods We treated ovariectomized (OVX) female Sprague-Dawley rats either with Baicalein (10mg/kg BW), Zileuton (10mg/kg BW) or a combination of both (each 10mg/kg BW) for 13 weeks and compared with untreated OVX and NON-OVX groups (n=12-16 rats per group). Lumbar vertebral bodies and femora were analyzed. Tibiae were osteotomized, plate-stabilized (at week 8 after OVX) and likewise analyzed by biomechanical, histological, micro-computed tomographical and ashing tests. The skeletal muscle structure was analyzed. Results Oral administration of Baicalein did not confirm the reported favorable cortical effects in neither vertebra nor femur. Zileuton showed a beneficial effect on trabecular vertebra, while the femur was negatively affected. Callus formation was enhanced by all treatments; however, its density and biomechanical properties were unaltered. Lipoxygenase inhibition did not show a beneficial effect on skeletal muscle. The combination therapy did not ameliorate OVX-induced osteoporosis but induced even more bone loss. Conclusions The preventive anti-osteoporotic treatments with two lipoxygenase inhibitors applied either alone or in combination showed no benefit for the musculoskeletal system in estrogen deficient rats."],["dc.identifier.doi","10.3389/fendo.2021.706504"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88533"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-2392"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Inhibition of Lipoxygenases Showed No Benefit for the Musculoskeletal System in Estrogen Deficient Rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","6893137"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Journal of Nutrition and Metabolism"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","2016"],["dc.contributor.author","Hoffmann, Daniel B."],["dc.contributor.author","Griesel, Markus H."],["dc.contributor.author","Brockhusen, Bastian"],["dc.contributor.author","Tezval, Mohammad"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Menger, Bjoern"],["dc.contributor.author","Wassmann, Marco"],["dc.contributor.author","Stuermer, Klaus Michael"],["dc.contributor.author","Sehmisch, Stephan"],["dc.date.accessioned","2019-07-09T11:42:06Z"],["dc.date.available","2019-07-09T11:42:06Z"],["dc.date.issued","2016"],["dc.description.abstract","Background. 8-Prenylnaringenin (8-PN) is the phytoestrogen with the highest affinity for estrogen receptor-𝛼� (ER-𝛼�), which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV). Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc) of 8-PN (1.77mg/kg) for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35Hz, amplitude 0.47 mm). Other groups received either onlyWBVV or no treatment. Methods.The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatmentwith 8-PN caused a slight increase in uterine wetweight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones."],["dc.identifier.doi","10.1155/2016/6893137"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12873"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58593"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2090-0732"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","582"],["dc.bibliographiccitation.issue","09"],["dc.bibliographiccitation.journal","Experimental and Clinical Endocrinology & Diabetes"],["dc.bibliographiccitation.lastpage","595"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Blaschke, Martina"],["dc.contributor.author","Ponce, Maria Laura"],["dc.contributor.author","Klüver, Anne"],["dc.contributor.author","Köpp, Regine"],["dc.contributor.author","Hüfner, Michael"],["dc.contributor.author","Schieker, Matthias"],["dc.contributor.author","Miosge, Nicolai"],["dc.contributor.author","Siggelkow, Heide"],["dc.date.accessioned","2021-04-14T08:23:08Z"],["dc.date.available","2021-04-14T08:23:08Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1055/a-1084-3888"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80806"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1439-3646"],["dc.relation.issn","0947-7349"],["dc.title","Decreased Expression of the Human Urea Transporter SLC14A1 in Bone is Induced by Cytokines and Stimulates Adipogenesis of Mesenchymal Progenitor Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","243"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Bone and Mineral Metabolism"],["dc.bibliographiccitation.lastpage","255"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Hoffmann, D. B."],["dc.contributor.author","Komrakova, M."],["dc.contributor.author","Pflug, S."],["dc.contributor.author","Oertzen, M. von"],["dc.contributor.author","Saul, D."],["dc.contributor.author","Weiser, L."],["dc.contributor.author","Walde, T. A."],["dc.contributor.author","Wassmann, M."],["dc.contributor.author","Schilling, A. F."],["dc.contributor.author","Lehmann, W."],["dc.contributor.author","Sehmisch, S."],["dc.date.accessioned","2020-06-15T13:52:01Z"],["dc.date.available","2020-06-15T13:52:01Z"],["dc.date.issued","2018"],["dc.description.abstract","We investigated the combinatorial effects of whole-body vertical vibration (WBVV) with the primarily osteoanabolic parathyroid hormone (PTH) and the mainly antiresorptive strontium ranelate (SR) in a rat model of osteoporosis. Ovariectomies were performed on 76 three-month-old Sprague-Dawley rats (OVX, n = 76; NON-OVX, n = 12). After 8 weeks, the ovariectomized rats were divided into 6 groups. One group (OVX + PTH) received daily injections of PTH (40 µg/kg body weight/day) for 6 weeks. Another group (OVX + SR) was fed SR-supplemented chow (600 mg/kg body weight/day). Three groups (OVX + VIB, OVX + PTH + VIB, and OVX + SR + VIB) were treated with WBVV twice a day at 70 Hz for 15 min. Two groups (OVX + PTH + VIB, OVX + SR + VIB) were treated additionally with PTH and SR, respectively. The rats were killed at 14 weeks post-ovariectomy. The lumbar vertebrae and femora were removed for biomechanical and morphological assessment. PTH produced statistically significant improvements in biomechanical and structural properties, including bone mineral density (BMD) and trabecular bone quality. In contrast, SR treatment exerted mild effects, with significant effects in cortical thickness only. SR produced no significant improvement in biomechanical properties. WBVV as a single or an adjunctive therapy produced no significant improvements. In conclusion, vibration therapy administered as a single or dual treatment had no significant impact on bones affected by osteoporosis. PTH considerably improved bone quality in osteoporosis cases and is superior to treatment with SR."],["dc.identifier.doi","10.1007/s00774-018-0929-9"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66263"],["dc.language.iso","en"],["dc.relation.issn","0914-8779"],["dc.title","Evaluation of Ostarine as a Selective Androgen Receptor Modulator in a Rat Model of Postmenopausal Osteoporosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","253"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Endocrinology"],["dc.bibliographiccitation.lastpage","262"],["dc.bibliographiccitation.volume","201"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Werner, Carsten"],["dc.contributor.author","Wicke, Michael"],["dc.contributor.author","Nguyen, Ba Tiep"],["dc.contributor.author","Sehmisch, Stephan"],["dc.contributor.author","Tezval, Mohammad"],["dc.contributor.author","Stuermer, Klaus Michael"],["dc.contributor.author","Stuermer, Ewa Klara"],["dc.date.accessioned","2018-11-07T08:30:21Z"],["dc.date.available","2018-11-07T08:30:21Z"],["dc.date.issued","2009"],["dc.description.abstract","The effect of daidzein (D), 4-methylbenzylidene camphor (4-MBC) or estradiol-17 beta-benzoate (E-2) on muscle of osteoporotic rats during fracture healing was studied. After performing a metaphyseal tibia osteotomy in 96 osteoporotic 5-month-old female Sprague-Dawley rats, they received daily 50 mg D, 200 mg 4-MBC or 0.4 mg E-2 per kg body weight, or soy free (SF) diet up to 36 and 72 days. Mitochondrial activity, fiber area, and capillary density were analyzed in M. gastrocnemius. Osseous callus bridging of fracture was observed in half of the rats after 36 days. By day 72, fracture was healed in most of the animals. State 3 mitochondrial respiration significantly enhanced in E-2, 4-MBC and D groups versus SF after 36 days (30, 32 and 32 vs 23 pmol O-2/s per mg). It declined after 72 days, however, in E-2 group it was still at a higher level versus SF (25, 23 and 21 vs 20 pmol O-2/s per mg). Size of fast oxidative glycolytic (FOG) and fast glycolytic (FG) fibers, capillary density did not differ significantly between the groups, however, at day 36 an increase in D and 4-MBC groups was detectable. FOG diameter was 64, 66, 68, and 58 mu m and FG diameter was 88, 98, 95, and 89 mu m in SF, D, 4-MBC, and E-2 groups. The ratio of capillaries to muscle fiber was 1.1, 1.4, 1.3, and 1.1 in SF, D, 4-MBC and E-2 groups by day 36. D and 4-MBC react similar to estrogen thereby improving oxidative cell metabolism in severe osteoporotic rats. The level of mitochondrial activity was higher, though no significant morphological differences could be shown. Journal of Endocrinology (2009) 201, 253-262"],["dc.description.sponsorship","German Research Society [DFG STU 478]"],["dc.identifier.doi","10.1677/JOE-08-0521"],["dc.identifier.isi","000272629100008"],["dc.identifier.pmid","19273502"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16878"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Bioscientifica Ltd"],["dc.relation.issn","1479-6805"],["dc.relation.issn","0022-0795"],["dc.title","Effect of daidzein, 4-methylbenzylidene camphor or estrogen on gastrocnemius muscle of osteoporotic rats undergoing tibia healing period"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","4"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nutrition & Metabolism"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Saul, Dominik"],["dc.contributor.author","Weber, Marie"],["dc.contributor.author","Zimmermann, Marc Hendrik"],["dc.contributor.author","Kosinsky, Robyn Laura"],["dc.contributor.author","Hoffmann, Daniel Bernd"],["dc.contributor.author","Menger, Björn"],["dc.contributor.author","Taudien, Stefan"],["dc.contributor.author","Lehmann, Wolfgang"],["dc.contributor.author","Komrakova, Marina"],["dc.contributor.author","Sehmisch, Stephan"],["dc.date.accessioned","2019-07-09T11:49:50Z"],["dc.date.accessioned","2020-06-09T07:03:29Z"],["dc.date.available","2019-07-09T11:49:50Z"],["dc.date.available","2020-06-09T07:03:29Z"],["dc.date.issued","2019"],["dc.description.abstract","Background Osteoporosis is one of the world’s major medical burdens in the twenty-first century. Pharmaceutical intervention currently focusses on decelerating bone loss, but phytochemicals such as baicalein, which is a lipoxygenase inhibitor, may rescue bone loss. Studies evaluating the effect of baicalein in vivo are rare. Methods We administered baicalein to sixty-one three-month-old female Sprague-Dawley rats. They were divided into five groups, four of which were ovariectomized (OVX) and one non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, bilateral tibial osteotomy with plate osteosynthesis was performed and bone formation quantified. Baicalein was administered subcutaneously using three doses (C1: 1 mg/kg BW; C2: 10 mg/kg BW; and C3: 100 mg/kg BW) eight weeks after ovariectomy for four weeks. Finally, femora and tibiae were collected. Biomechanical tests, micro-CT, ashing, histological and gene expression analyses were performed. Results Biomechanical properties were unchanged in tibiae and reduced in femora. In tibiae, C1 treatment enhanced callus density and cortical width and decreased callus area. In the C3 group, callus formation was reduced during the first 3 weeks after osteotomy, correlating to a higher mRNA expression of Osteocalcin, Tartrate-resistant acid phosphatase and Rankl. In femora, baicalein treatments did not alter bone parameters. Conclusions Baicalein enhanced callus density and cortical width but impaired early callus formation in tibiae. In femora, it diminished the biomechanical properties and calcium-to-phosphate ratio. Thus, it is not advisable to apply baicalein to treat early bone fractures. To determine the exact effects on bone healing, further studies in which baicalein treatments are started at different stages of healing are needed."],["dc.identifier.doi","10.1186/s12986-018-0327-2"],["dc.identifier.pmid","30651746"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15789"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59640"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66212"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1743-7075"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Effect of the Lipoxygenase Inhibitor Baicalein on Bone Tissue and Bone Healing in Ovariectomized Rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC