Options
Stoldt, Stefan
Loading...
Preferred name
Stoldt, Stefan
Official Name
Stoldt, Stefan
Alternative Name
Stoldt, S.
Now showing 1 - 10 of 19
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2011Book Chapter [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.lastpage","19"],["dc.bibliographiccitation.seriesnr","124"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Neumann, Daniel"],["dc.contributor.editor","Müller, Susann"],["dc.contributor.editor","Bley, Thomas"],["dc.date.accessioned","2017-09-07T11:45:03Z"],["dc.date.available","2017-09-07T11:45:03Z"],["dc.date.issued","2011"],["dc.description.abstract","Heterogeneity in the shapes of individual multicellular organisms is a daily experience. Likewise, even a quick glance through the ocular of a light microscope reveals the morphological heterogeneities in genetically identical cultured cells, whereas heterogeneities on the level of the organelles are much less obvious. This short review focuses on intracellular heterogeneities at the example of the mitochondria and their analysis by fluorescence microscopy. The overall mitochondrial shape as well as mitochondrial dynamics can be studied by classical (fluorescence) light microscopy. However, with an organelle diameter generally close to the resolution limit of light, the heterogeneities within mitochondria cannot be resolved with conventional light microscopy. Therefore, we briefly discuss here the potential of subdiffraction light microscopy (nanoscopy) to study inner-mitochondrial heterogeneities."],["dc.identifier.doi","10.1007/10_2010_81"],["dc.identifier.gro","3142799"],["dc.identifier.isi","000288919400001"],["dc.identifier.pmid","21072702"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/243"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.publisher.place","Berlin"],["dc.relation.crisseries","Advances in Biochemical Engineering, Biotechnology"],["dc.relation.isbn","978-3-642-16886-4"],["dc.relation.ispartof","High Resolution Microbial Single Cell Analytics"],["dc.relation.ispartofseries","Advances in Biochemical Engineering, Biotechnology; 124"],["dc.relation.issn","0724-6145"],["dc.relation.issn","0724-6145"],["dc.title","Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations and Within Single Cells"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2292"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","2301"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Wenzel, Dirk"],["dc.contributor.author","Hildenbeutel, Markus"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:48:51Z"],["dc.date.available","2017-09-07T11:48:51Z"],["dc.date.issued","2012"],["dc.description.abstract","The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial-and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane-the cristae membrane (CM) and the inner boundary membrane (IBM)-under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs."],["dc.identifier.doi","10.1091/mbc.E11-06-0538"],["dc.identifier.gro","3142518"],["dc.identifier.isi","000306286700006"],["dc.identifier.pmid","22513091"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9497"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8878"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-1524"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article [["dc.bibliographiccitation.firstpage","6070"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Chemistry – A European Journal"],["dc.bibliographiccitation.lastpage","6076"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Grimm, Florian"],["dc.contributor.author","Rehman, Jasmin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Schlötel, Jan Gero"],["dc.contributor.author","Nizamov, Shamil"],["dc.contributor.author","John, Michael"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2021-06-01T09:41:16Z"],["dc.date.available","2021-06-01T09:41:16Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1002/chem.202005134"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84865"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1521-3765"],["dc.relation.issn","0947-6539"],["dc.title","Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy "],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","ACS chemical biology"],["dc.bibliographiccitation.lastpage","6"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Ta, Haisen"],["dc.contributor.author","Ratz, Michael"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Belov, Vladimir N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:21:24Z"],["dc.date.available","2018-01-17T13:21:24Z"],["dc.date.issued","2017"],["dc.description.abstract","A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells."],["dc.identifier.doi","10.1021/acschembio.7b00616"],["dc.identifier.pmid","28933823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11709"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1554-8937"],["dc.title","Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Nature Photonics"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Mihaila, Tiberiu S."],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2021-04-14T08:28:37Z"],["dc.date.available","2021-04-14T08:28:37Z"],["dc.date.issued","2021"],["dc.description.abstract","We introduce MINSTED, a fluorophore localization and super-resolution microscopy concept based on stimulated emission depletion (STED) that provides spatial precision and resolution down to the molecular scale. In MINSTED, the intensity minimum of the STED doughnut, and hence the point of minimal STED, serves as a movable reference coordinate for fluorophore localization. As the STED rate, the background and the required number of fluorescence detections are low compared with most other STED microscopy and localization methods, MINSTED entails substantially less fluorophore bleaching. In our implementation, 200–1,000 detections per fluorophore provide a localization precision of 1–3 nm in standard deviation, which in conjunction with independent single fluorophore switching translates to a ~100-fold improvement in far-field microscopy resolution over the diffraction limit. The performance of MINSTED nanoscopy is demonstrated by imaging the distribution of Mic60 proteins in the mitochondrial inner membrane of human cells."],["dc.identifier.doi","10.1038/s41566-021-00774-2"],["dc.identifier.pmid","33953795"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82664"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/279"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1749-4893"],["dc.relation.haserratum","/handle/2/103523"],["dc.relation.issn","1749-4885"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY 4.0"],["dc.title","MINSTED fluorescence localization and nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of microscopy"],["dc.bibliographiccitation.lastpage","13"],["dc.bibliographiccitation.volume","240"],["dc.contributor.author","Wurm, C. A."],["dc.contributor.author","Suppanz, I. E."],["dc.contributor.author","Stoldt, S."],["dc.contributor.author","Jakobs, S."],["dc.date.accessioned","2017-09-07T11:45:18Z"],["dc.date.available","2017-09-07T11:45:18Z"],["dc.date.issued","2010"],["dc.description.abstract","P>Live cell imaging of protein distributions is an essential tool in modern cell biology. It relies on the functional labelling of a host protein with a fluorophore, which may either be a genetically fused fluorescent protein or an organic dye binding to the host protein. The biarsenical-tetracysteine system or 'FlAsH-labelling', is based on the high affinity interaction between a biarsenical probe and a small protein tag. This approach has been successfully used for live cell imaging in the budding yeast Saccharomyces cerevisiae. However, the established labelling protocols require a lengthy overnight incubation of the cells with the dye under tightly controlled growth conditions, which severely limits the use of this approach. In this study, we characterize an efficient method for introducing FlAsH-EDT(2) into live budding yeast cells using standard electroporation. The labelling time is reduced from more than 12 h to less than 1 h without compromising the labelling efficiency or cell viability. This approach may be used for cells in different growth phases or grown under different conditions. It may be further extended to other small high affinity probes, thus opening up new possibilities for labelling in budding yeast."],["dc.identifier.doi","10.1111/j.1365-2818.2010.03378.x"],["dc.identifier.gro","3142851"],["dc.identifier.isi","000281715400002"],["dc.identifier.pmid","21050208"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/300"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0022-2720"],["dc.title","Rapid FlAsH labelling in the budding yeast Saccharomyces cerevisiae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","199"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Nature computational science"],["dc.bibliographiccitation.lastpage","211"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Tameling, Carla"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Naas, Julia"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Munk, Axel"],["dc.date.accessioned","2021-12-01T10:55:26Z"],["dc.date.available","2021-12-01T10:55:26Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1038/s43588-021-00050-x"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94899"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/242"],["dc.relation","SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften"],["dc.relation","SFB 1456 | Cluster C | C06: Optimal transport based colocalization"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","2662-8457"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Munk"],["dc.title","Colocalization for super-resolution microscopy via optimal transport"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Erratum [["dc.bibliographiccitation.firstpage","627"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Photonics"],["dc.bibliographiccitation.lastpage","627"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Mihaila, Tiberiu S."],["dc.contributor.author","Butkevich, Alexey N."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-03-01T11:46:00Z"],["dc.date.available","2022-03-01T11:46:00Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1038/s41566-021-00816-9"],["dc.identifier.pii","816"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103523"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1749-4893"],["dc.relation.iserratumof","/handle/2/82664"],["dc.relation.issn","1749-4885"],["dc.rights.uri","https://www.springer.com/tdm"],["dc.title","Author Correction: MINSTED fluorescence localization and nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI