Now showing 1 - 10 of 14
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.artnumber","jcs209890"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.description.abstract","The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field."],["dc.identifier.doi","10.1242/jcs.209890"],["dc.identifier.pmid","29535154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77706"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.haserratum","/handle/2/102924"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 3.0"],["dc.title","Formation of COPI-coated vesicles at a glance"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","134"],["dc.bibliographiccitation.issue","7631"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","138"],["dc.bibliographiccitation.volume","540"],["dc.contributor.author","Aviram, Naama"],["dc.contributor.author","Ast, Tslil"],["dc.contributor.author","Costa, Elizabeth A."],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Jan, Calvin H."],["dc.contributor.author","Haßdenteufel, Sarah"],["dc.contributor.author","Dudek, Johanna"],["dc.contributor.author","Jung, Martin"],["dc.contributor.author","Schorr, Stefan"],["dc.contributor.author","Zimmermann, Richard"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Weissman, Jonathan S."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2018-04-23T11:49:05Z"],["dc.date.available","2018-04-23T11:49:05Z"],["dc.date.issued","2016"],["dc.description.abstract","In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments. Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40) and homologous yeast guided entry of tail-anchored proteins (GET) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay. We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible."],["dc.identifier.doi","10.1038/nature20169"],["dc.identifier.gro","3142487"],["dc.identifier.pmid","27905431"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13639"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/3"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.issn","0028-0836"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The SND proteins constitute an alternative targeting route to the endoplasmic reticulum"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Overview
    [["dc.bibliographiccitation.firstpage","672"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","682"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Geva, Yosef"],["dc.contributor.author","Crissman, Jonathan"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Gómez-Navarro, Natalia"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Stahmer, Kyle R."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Miller, Elizabeth A."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2018-04-23T11:49:04Z"],["dc.date.available","2018-04-23T11:49:04Z"],["dc.date.issued","2017"],["dc.description.abstract","The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components."],["dc.identifier.doi","10.1111/tra.12503"],["dc.identifier.gro","3142485"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13637"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Two novel effectors of trafficking and maturation of the yeast plasma membrane H+-ATPase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","jcs232124"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","132"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Huranova, Martina"],["dc.contributor.author","Estrada, Alejandro F."],["dc.contributor.author","Rau, E-Ming"],["dc.contributor.author","Spang, Anne"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2020-12-10T18:41:53Z"],["dc.date.available","2020-12-10T18:41:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1242/jcs.232124"],["dc.identifier.pmid","31331965"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16843"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77719"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/79"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Conference Paper
    [["dc.bibliographiccitation.firstpage","1882"],["dc.bibliographiccitation.issue","7, Part B"],["dc.bibliographiccitation.lastpage","1893"],["dc.bibliographiccitation.volume","1863"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2017-09-07T11:44:49Z"],["dc.date.available","2017-09-07T11:44:49Z"],["dc.date.issued","2016"],["dc.description.abstract","Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca2+ signalling, voltage-dependent L-type Ca2+ channels and ryanodine receptor Ca2+ release channels are each expressed at high levels similar to ventricles. However, intracellular Ca2+ transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K+ channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. (c) 2015 Published by Elsevier B.V."],["dc.identifier.doi","10.1016/j.bbamcr.2015.11.025"],["dc.identifier.gro","3141657"],["dc.identifier.isi","000378360400022"],["dc.identifier.pmid","26620800"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6120"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/108"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.conference","8th Ascona International Workshop on Cardiomyocyte Biology - Integration of Developmental and Environmental Cues"],["dc.relation.eissn","0006-3002"],["dc.relation.eventend","2015-05-03"],["dc.relation.eventlocation","Ascona, SWITZERLAND"],["dc.relation.eventstart","2015-05-03"],["dc.relation.ispartof","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.relation.issn","0167-4889"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The molecular and functional identities of atrial cardiomyocytes in health and disease"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","370"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","379"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Goldmann, Omer"],["dc.contributor.author","Golan, Matan"],["dc.contributor.author","Chuartzman, Silvia"],["dc.contributor.author","Munro, Sean"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2020-12-10T18:36:31Z"],["dc.date.available","2020-12-10T18:36:31Z"],["dc.date.issued","2018"],["dc.description.abstract","A third of yeast genes encode for proteins that function in the endomembrane system. However, the precise localization for many of these proteins is still uncertain. Here, we visualized a collection of ~500 N-terminally, green fluorescent protein (GFP), tagged proteins of the yeast Saccharomyces cerevisiae. By co-localizing them with 7 known markers of endomembrane compartments we determined the localization for over 200 of them. Using this approach, we create a systematic database of the various secretory compartments and identify several new residents. Focusing in, we now suggest that Lam5 resides in contact sites between the endoplasmic reticulum and the late Golgi. Additionally, analysis of interactions between the COPI coat and co-localizing proteins from our screen identifies a subset of proteins that are COPI-cargo. In summary, our approach defines the protein roster within each compartment enabling characterization of the physical and functional organization of the endomembrane system and its components."],["dc.identifier.doi","10.1111/tra.12560"],["dc.identifier.pmid","29527758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76654"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6916"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","6921"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Richter, Kora P."],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of delta-COP via functional complementation in yeast, we dissect the domains of the delta-COP subunit. We show that the mu-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer."],["dc.identifier.doi","10.1073/pnas.1603544113"],["dc.identifier.gro","3141664"],["dc.identifier.isi","000378272400043"],["dc.identifier.pmid","27298352"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6897"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: University Medical Center Gottingen"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Natl Acad Sciences"],["dc.relation.issn","0027-8424"],["dc.title","delta-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","JCI Insight"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Zhang, Haixia"],["dc.contributor.author","Hanson, Alex"],["dc.contributor.author","de Almeida, Tobias Scherf"],["dc.contributor.author","Emfinger, Christopher"],["dc.contributor.author","McClenaghan, Conor"],["dc.contributor.author","Harter, Theresa"],["dc.contributor.author","Yan, Zihan"],["dc.contributor.author","Cooper, Paige E."],["dc.contributor.author","Brown, G. Schuyler"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Mecham, Robert P."],["dc.contributor.author","Kovacs, Atilla"],["dc.contributor.author","Halabi, Carmen M."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Remedi, Maria S."],["dc.contributor.author","Nichols, Colin G."],["dc.date.accessioned","2021-04-14T08:28:11Z"],["dc.date.available","2021-04-14T08:28:11Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1172/jci.insight.145934"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82527"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2379-3708"],["dc.title","Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e33650"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Arakel, Eric C."],["dc.date.accessioned","2022-03-01T11:44:33Z"],["dc.date.available","2022-03-01T11:44:33Z"],["dc.date.issued","2017"],["dc.description.abstract","Advances in imaging techniques have shed new light on the structure of vesicles formed by COPI protein complexes."],["dc.description.abstract","Advances in imaging techniques have shed new light on the structure of vesicles formed by COPI protein complexes."],["dc.identifier.doi","10.7554/elife.33650"],["dc.identifier.gro","3142484"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103048"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13636"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.notes.status","final"],["dc.relation.eissn","2050-084X"],["dc.relation.issn","2050-084X"],["dc.title","Looking inside the cell"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Overview
    [["dc.bibliographiccitation.firstpage","271"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","BIOspektrum"],["dc.bibliographiccitation.lastpage","274"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Arakel, Eric"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:45:01Z"],["dc.date.available","2017-09-07T11:45:01Z"],["dc.date.issued","2014"],["dc.description.abstract","Arginine-based ER localization signals are peptide sorting motifs recognized by the COPI vesicular coat. They have a well-characterized role in the quality control of multimeric membrane protein assembly. Recent evidence from cardiac myocytes implies that these peptide-sorting motifs can mediate Golgi storage of membrane protein cargo, which can translocate to the cell surface upon phosphorylation of the motif. Cardiac ATPsensitive potassium channels are thus deployed to the surface of ventricular cardiomyocytes during the fight-or-flight response."],["dc.identifier.doi","10.1007/s12268-014-0439-9"],["dc.identifier.gro","3145460"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3169"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/2"],["dc.language.iso","de"],["dc.notes.intern","life science"],["dc.notes.status","final"],["dc.notes.submitter","switt"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation.issn","0947-0867"],["dc.relation.issn","1868-6249"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","Ins Herz des sekretorischen Pfades: Stress mobilisiert Ionenkanäle"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI