Options
Brose, Nils
Loading...
Preferred name
Brose, Nils
Official Name
Brose, Nils
Alternative Name
Brose, N.
Main Affiliation
Now showing 1 - 10 of 40
2017Journal Article [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Ripamonti, Silvia"],["dc.contributor.author","Ambrozkiewicz, Mateusz C."],["dc.contributor.author","Guzzi, Francesca"],["dc.contributor.author","Gravati, Marta"],["dc.contributor.author","Biella, Gerardo"],["dc.contributor.author","Bormuth, Ingo"],["dc.contributor.author","Hammer, Matthieu"],["dc.contributor.author","Tuffy, Liam P."],["dc.contributor.author","Sigler, Albrecht"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Nishimori, Katsuhiko"],["dc.contributor.author","Toselli, Mauro"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Parenti, Marco"],["dc.contributor.author","Rhee, JeongSeop"],["dc.date.accessioned","2018-03-08T09:21:30Z"],["dc.date.available","2018-03-08T09:21:30Z"],["dc.date.issued","2017"],["dc.description.abstract","Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances."],["dc.identifier.doi","10.7554/eLife.22466"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/12900"],["dc.language.iso","en"],["dc.notes.intern","GRO-Li-Import"],["dc.notes.status","final"],["dc.relation.doi","10.7554/eLife.22466"],["dc.relation.eissn","2050-084X"],["dc.title","Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2007Journal Article [["dc.bibliographiccitation.firstpage","S39"],["dc.bibliographiccitation.journal","Neuroscience Research"],["dc.bibliographiccitation.volume","58"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Katsurabayashi, Shutaro"],["dc.contributor.author","Neeb, Antje"],["dc.contributor.author","Umikawa, Masato"],["dc.contributor.author","Kariya, Ken-ichi"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2022-03-01T11:45:18Z"],["dc.date.available","2022-03-01T11:45:18Z"],["dc.date.issued","2007"],["dc.identifier.doi","10.1016/j.neures.2007.06.228"],["dc.identifier.pii","S016801020700421X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103283"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0168-0102"],["dc.title","Regulation of dendritic development by E3 ubiquitin ligase Nedd4"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1067"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","1077"],["dc.bibliographiccitation.volume","190"],["dc.contributor.author","Liu, Yuanyuan"],["dc.contributor.author","Schirra, Claudia"],["dc.contributor.author","Edelmann, Ludwig"],["dc.contributor.author","Matti, Ulf"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Hof, Detlef"],["dc.contributor.author","Bruns, Dieter"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rieger, Heiko"],["dc.contributor.author","Stevens, David R."],["dc.contributor.author","Rettig, Jens"],["dc.date.accessioned","2017-09-07T11:45:19Z"],["dc.date.available","2017-09-07T11:45:19Z"],["dc.date.issued","2010"],["dc.description.abstract","Priming of large dense-core vesicles (LDCVs) is a Ca(2+)-dependent step by which LDCVs enter a release-ready pool, involving the formation of the soluble N-ethyl-maleimide sensitive fusion protein attachment protein (SNAP) receptor complex consisting of syntaxin, SNAP-25, and synaptobrevin. Using mice lacking both isoforms of the calcium-dependent activator protein for secretion (CAPS), we show that LDCV priming in adrenal chromaffin cells entails two distinct steps. CAPS is required for priming of the readily releasable LDCV pool and sustained secretion in the continued presence of high Ca(2+) concentrations. Either CAPS1 or CAPS2 can rescue secretion in cells lacking both CAPS isoforms. Furthermore, the deficit in the readily releasable LDCV pool resulting from CAPS deletion is reversed by a constitutively open form of syntaxin but not by Munc13-1, a priming protein that facilitates the conversion of syntaxin to the open conformation. Our data indicate that CAPS functions downstream of Munc13s but also interacts functionally with Munc13s in the LDCV-priming process."],["dc.identifier.doi","10.1083/jcb.201001164"],["dc.identifier.gro","3142860"],["dc.identifier.isi","000282604600012"],["dc.identifier.pmid","20855507"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/310"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9525"],["dc.title","Two distinct secretory vesicle-priming steps in adrenal chromaffin cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1351"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Protocols"],["dc.bibliographiccitation.lastpage","1365"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Burgalossi, Andrea"],["dc.contributor.author","Jung, SangYong"],["dc.contributor.author","Man, Kwun-nok Mimi"],["dc.contributor.author","Nair, Ramya"],["dc.contributor.author","Jockusch, Wolf J"],["dc.contributor.author","Wojcik, Sonja M"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.date.accessioned","2017-09-07T11:48:50Z"],["dc.date.available","2017-09-07T11:48:50Z"],["dc.date.issued","2012"],["dc.description.abstract","Neurotransmitter release is triggered by membrane depolarization, Ca²⁺ influx and Ca²⁺ sensing by the release machinery, causing synaptic vesicle (SV) fusion with the plasma membrane. Interlinked is a complex membrane cycle in which vesicles are tethered to the release site, primed, fused and recycled. As many of these processes are Ca²⁺ dependent and simultaneously occurring, it is difficult to dissect them experimentally. This problem can be partially circumvented by controlling synaptic Ca²⁺ concentrations via UV photolysis of caged Ca²⁺. We developed a culture protocol for Ca²⁺ uncaging in small synapses on the basis of the generation of small glia cell islands with single neurons on top, which are sufficiently small to be covered with a UV-light flash. Neurons are loaded with the photolabile Ca²⁺-chelator nitrophenyl-EGTA and Ca²⁺ indicators, and a UV flash is used to trigger Ca²⁺-uncaging and SV fusion. The protocol takes three weeks to complete and provides unprecedented insights into the mechanisms of transmitter release."],["dc.identifier.doi","10.1038/nprot.2012.074"],["dc.identifier.gro","3142502"],["dc.identifier.isi","000305960400008"],["dc.identifier.pmid","22722370"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8860"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1754-2189"],["dc.title","Analysis of neurotransmitter release mechanisms by photolysis of caged Ca²⁺ in an autaptic neuron culture system"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article Erratum [["dc.bibliographiccitation.firstpage","882"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Min, Sang-Won"],["dc.contributor.author","Krinner, Stefanie"],["dc.contributor.author","Arancillo, Marife"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2022-03-01T11:45:21Z"],["dc.date.available","2022-03-01T11:45:21Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.neuron.2014.11.003"],["dc.identifier.pii","S0896627314010034"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103296"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0896-6273"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1160"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","1177"],["dc.bibliographiccitation.volume","292"],["dc.contributor.author","Papadopoulos, Theofilos"],["dc.contributor.author","Rhee, Hong Jun"],["dc.contributor.author","Subramanian, Devaraj"],["dc.contributor.author","Paraskevopoulou, Foteini"],["dc.contributor.author","Mueller, Rainer"],["dc.contributor.author","Schultz, Carsten"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Betz, Heinrich"],["dc.date.accessioned","2021-06-01T10:51:07Z"],["dc.date.available","2021-06-01T10:51:07Z"],["dc.date.issued","2017"],["dc.description.abstract","The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations."],["dc.identifier.doi","10.1074/jbc.M116.771592"],["dc.identifier.gro","3144894"],["dc.identifier.pmid","27941024"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86897"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/57"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P10: Rekrutierung und Verankerung von Neurotransmitterrezeptoren an GABAergen Synapsen - Zellbiologie und molekulare Mechanismen"],["dc.relation.issn","0021-9258"],["dc.relation.workinggroup","RG Brose"],["dc.rights","CC BY 4.0"],["dc.title","Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2002Journal Article Research Paper [["dc.bibliographiccitation.firstpage","121"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","133"],["dc.bibliographiccitation.volume","108"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Betz, Andrea"],["dc.contributor.author","Pyott, S."],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Varoqueaux, Frederique"],["dc.contributor.author","Augustin, Iris"],["dc.contributor.author","Hesse, Dörte"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Takahashi, Masami"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2017-09-07T11:45:57Z"],["dc.date.available","2017-09-07T11:45:57Z"],["dc.date.issued","2002"],["dc.description.abstract","Munc13-1 is a presynaptic protein with an essential role in synaptic vesicle priming. It contains a diacylglycerol (DAG)/beta phorbol ester binding C-1 domain and is a potential target of the DAG second messenger pathway that may act in parallel with PKCs. Using genetically modified mice that express a DAG/beta phorbol ester binding-deficient Munc13-1(H567K) variant instead of the wild-type protein, we determined the relative contribution of PKCs and Munc13-1 to DAG/beta phorbol ester-dependent regulation of neurotransmitter release. We show that Munc13s are the main presynaptic DAG/beta phorbol ester receptors in hippocampal neurons. Modulation of Munc13-1 activity by second messengers via the DAG/beta phorbol ester binding C-1 domain is essential for use-dependent alterations of synaptic efficacy and survival."],["dc.identifier.doi","10.1016/S0092-8674(01)00635-3"],["dc.identifier.gro","3144226"],["dc.identifier.isi","000173280700013"],["dc.identifier.pmid","11792326"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1827"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0092-8674"],["dc.title","β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3632"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","3643.e8"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Maus, Lydia"],["dc.contributor.author","Lee, ChoongKu"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Sertel, Sinem M."],["dc.contributor.author","Weyand, Kirsten"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2020-12-10T14:23:02Z"],["dc.date.available","2020-12-10T14:23:02Z"],["dc.date.issued","2020"],["dc.description.abstract","Although similar in molecular composition, synapses can exhibit strikingly distinct functional transmitter release and plasticity characteristics. To determine whether ultrastructural differences co-define this functional heterogeneity, we combine hippocampal organotypic slice cultures, high-pressure freezing, freeze substitution, and 3D-electron tomography to compare two functionally distinct synapses: hippocampal Schaffer collateral and mossy fiber synapses. We find that mossy fiber synapses, which exhibit a lower release probability and stronger short-term facilitation than Schaffer collateral synapses, harbor lower numbers of docked synaptic vesicles at active zones and a second pool of possibly tethered vesicles in their vicinity. Our data indicate that differences in the ratio of docked versus tethered vesicles at active zones contribute to distinct functional characteristics of synapses."],["dc.identifier.doi","10.1016/j.celrep.2020.02.083"],["dc.identifier.pmid","32187536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71813"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/36"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A01: Die Ultrastruktur der Synapse in Aktion"],["dc.relation.workinggroup","RG Brose"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Cooper"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Ultrastructural Correlates of Presynaptic Functional Heterogeneity in Hippocampal Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","902"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","909"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Truong, Cuc Quynh Nguyen"],["dc.contributor.author","Nestvogel, Dennis"],["dc.contributor.author","Ratai, Olga"],["dc.contributor.author","Schirra, Claudia"],["dc.contributor.author","Stevens, David R."],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Rettig, Jens"],["dc.date.accessioned","2017-09-07T11:45:24Z"],["dc.date.available","2017-09-07T11:45:24Z"],["dc.date.issued","2014"],["dc.description.abstract","Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS) also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action."],["dc.identifier.doi","10.1016/j.celrep.2014.09.050"],["dc.identifier.gro","3142021"],["dc.identifier.isi","000344470000014"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3667"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.title","Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article [["dc.bibliographiccitation.firstpage","304"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","311.e4"],["dc.bibliographiccitation.volume","94"],["dc.contributor.author","Sigler, Albrecht"],["dc.contributor.author","Oh, Won Chan"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Kwon, Hyung-Bae"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2018-03-08T09:21:30Z"],["dc.date.available","2018-03-08T09:21:30Z"],["dc.date.issued","2017"],["dc.description.abstract","Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release."],["dc.identifier.doi","10.1016/j.neuron.2017.03.029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/12901"],["dc.language.iso","en"],["dc.notes.intern","GRO-Li-Import"],["dc.notes.status","final"],["dc.relation.doi","10.1016/j.neuron.2017.03.029"],["dc.relation.issn","0896-6273"],["dc.title","Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI