Options
Dean, Camin
Loading...
Preferred name
Dean, Camin
Official Name
Dean, Camin
Alternative Name
Dean, C.
Main Affiliation
Now showing 1 - 10 of 20
2014Journal Article [["dc.bibliographiccitation.artnumber","27"],["dc.bibliographiccitation.journal","Frontiers in synaptic neuroscience"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Shinoda, Yo"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Bharat, Vinita"],["dc.contributor.author","Brockelt, David"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:41:08Z"],["dc.date.available","2019-07-09T11:41:08Z"],["dc.date.issued","2014"],["dc.description.abstract","Brain-derived neurotrophic factor (BDNF) is widely reported to enhance synaptic vesicle (SV) exocytosis and neurotransmitter release. But it is still unclear whether BDNF enhances SV recycling at excitatory terminals only, or at both excitatory and inhibitory terminals. In the present study, in a direct comparison using cultured rat hippocampal neurons, we demonstrate that BDNF enhances both spontaneous and activity-dependent neurotransmitter release from excitatory terminals, but not from inhibitory terminals. BDNF treatment for 5 min or 48 h increased both spontaneous and activity-induced anti-synaptotagmin1 (SYT1) antibody uptake at excitatory terminals marked with vGluT1. Conversely, BDNF treatment did not enhance spontaneous or activity-induced uptake of anti-SYT1 antibodies in inhibitory terminals marked with vGAT. Time-lapse imaging of FM1-43 dye destaining in excitatory and inhibitory terminals visualized by post-hoc immunostaining of vGluT1 and vGAT also showed the same result: The rate of spontaneous and activity-induced destaining was increased by BDNF at excitatory synapses, but not at inhibitory synapses. These data demonstrate that BDNF enhances SV exocytosis in excitatory but not inhibitory terminals. Moreover, BDNF enhanced evoked SV exocytosis, even if vesicles were loaded under spontaneous vesicle recycling conditions. Thus, BDNF enhances both spontaneous and activity-dependent neurotransmitter release on both short and long time-scales, by the same mechanism."],["dc.identifier.doi","10.3389/fnsyn.2014.00027"],["dc.identifier.fs","607146"],["dc.identifier.pmid","25426063"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11694"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58356"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT"],["dc.relation.euproject","SytActivity"],["dc.relation.issn","1663-3563"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article [["dc.bibliographiccitation.firstpage","106"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Hippocampus"],["dc.bibliographiccitation.lastpage","118"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Zafar, Noman"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-11-07T10:04:08Z"],["dc.date.available","2018-11-07T10:04:08Z"],["dc.date.issued","2015"],["dc.description.abstract","Ethanol inhibits memory encoding and the induction of long-term potentiation (LTP) in CA1 neurons of the hippocampus. Hippocampal LTP at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of learning and memory, but there is striking heterogeneity in the underlying molecular mechanisms in distinct regions and in response to distinct stimuli. Basal and apical dendrites differ in terms of innervation, input specificity, and molecular mechanisms of LTP induction and maintenance, and different stimuli determine distinct molecular pathways of potentiation. However, lamina or stimulus-dependent effects of ethanol on LTP have not been investigated. Here, we tested the effect of acute application of 60 mM ethanol on LTP induction in distinct dendritic compartments (apical versus basal) of CA1 neurons, and in response to distinct stimulation paradigms (single versus repeated, spaced high frequency stimulation). We found that ethanol completely blocks LTP in apical dendrites, whereas it reduces the magnitude of LTP in basal dendrites. Acute ethanol treatment for just 15 min altered pre- and post-synaptic protein expression. Interestingly, ethanol increases the neurosteroid allopregnanolone, which causes ethanol-dependent inhibition of LTP, more prominently in apical dendrites, where ethanol has greater effects on LTP. This suggests that ethanol has general effects on fundamental properties of synaptic plasticity, but the magnitude of its effect on LTP differs depending on hippocampal sub-region and stimulus strength. (c) 2014 Wiley Periodicals, Inc."],["dc.identifier.doi","10.1002/hipo.22356"],["dc.identifier.isi","000346255600010"],["dc.identifier.pmid","25155179"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38630"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1098-1063"],["dc.relation.issn","1050-9631"],["dc.title","Ethanol Inhibits Long-Term Potentiation in Hippocampal CA1 Neurons, Irrespective of Lamina and Stimulus Strength, Through Neurosteroidogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.artnumber","015007"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Neurophotonics"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Stahlberg, Markus A."],["dc.contributor.author","Ramakrishnan, Charu"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Boyden, Edward S."],["dc.contributor.author","Deisseroth, Karl"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-09-23T14:31:03Z"],["dc.date.available","2019-09-23T14:31:03Z"],["dc.date.issued","2019"],["dc.description.abstract","Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here, we test the feasibility of a focal stimulation approach using stimulated emission depletion/reversible saturable optical fluorescence transitions-like illumination, whereby switchable light-gated channels are focally activated by a laser beam of one wavelength and deactivated by an overlapping donut-shaped beam of a different wavelength, confining activation to a center focal region. This method requires that activated channelrhodopsins are inactivated by overlapping illumination of a distinct wavelength and that photocurrents are large enough to be detected at the nanoscale. In tests of current optogenetic tools, we found that ChR2 C128A/H134R/T159C and CoChR C108S and C108S/D136A-activated with 405-nm light and inactivated by coillumination with 594-nm light-and C1V1 E122T/C167S-activated by 561-nm light and inactivated by 405-nm light-were most promising in terms of highest photocurrents and efficient inactivation with coillumination. Although further engineering of step-function channelrhodopsin variants with higher photoconductances will be required to employ this approach at the nanoscale, our findings provide a framework to guide future development of this technique."],["dc.identifier.doi","10.1117/1.NPh.6.1.015007"],["dc.identifier.pmid","30854405"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15860"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62431"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2329-423X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article [["dc.bibliographiccitation.artnumber","eaav1483"],["dc.bibliographiccitation.issue","6422"],["dc.bibliographiccitation.journal","Science (New York, N.Y.)"],["dc.bibliographiccitation.volume","363"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Shinoda, Yo"],["dc.contributor.author","Nitzan, Noam"],["dc.contributor.author","Heukamp, Alina"],["dc.contributor.author","Rannio, Sabine"],["dc.contributor.author","Martens, Henrik"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Wang, Yu Tian"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-31T13:02:46Z"],["dc.date.available","2019-07-31T13:02:46Z"],["dc.date.issued","2019"],["dc.description.abstract","Forgetting is important. Without it, the relative importance of acquired memories in a changing environment is lost. We discovered that synaptotagmin-3 (Syt3) localizes to postsynaptic endocytic zones and removes AMPA receptors from synaptic plasma membranes in response to stimulation. AMPA receptor internalization, long-term depression (LTD), and decay of long-term potentiation (LTP) of synaptic strength required calcium-sensing by Syt3 and were abolished through Syt3 knockout. In spatial memory tasks, mice in which Syt3 was knocked out learned normally but exhibited a lack of forgetting. Disrupting Syt3:GluA2 binding in a wild-type background mimicked the lack of LTP decay and lack of forgetting, and these effects were occluded in the Syt3 knockout background. Our findings provide evidence for a molecular mechanism in which Syt3 internalizes AMPA receptors to depress synaptic strength and promote forgetting."],["dc.identifier.doi","10.1126/science.aav1483"],["dc.identifier.pmid","30545844"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62245"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.relation.issn","1095-9203"],["dc.title","Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","79"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Acta Neuropathologica Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Masaracchia, Caterina"],["dc.contributor.author","Hnida, Marilena"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Lopes da Fonseca, Tomás"],["dc.contributor.author","Villar-Pique, Anna"],["dc.contributor.author","Branco, Tiago"],["dc.contributor.author","Stahlberg, Markus A."],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Fernández, Claudio O."],["dc.contributor.author","Milošević, Ira"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.date.accessioned","2019-07-09T11:45:45Z"],["dc.date.available","2019-07-09T11:45:45Z"],["dc.date.issued","2018"],["dc.description.abstract","Abstract Alpha-synuclein (aSyn) plays a crucial role in Parkinson\\’s disease (PD) and other synucleinopathies, since it misfolds and accumulates in typical proteinaceous inclusions. While the function of aSyn is thought to be related to vesicle binding and trafficking, the precise molecular mechanisms linking aSyn with synucleinopathies are still obscure. aSyn can spread in a prion-like manner between interconnected neurons, contributing to the propagation of the pathology and to the progressive nature of synucleinopathies. Here, we investigated the interaction of aSyn with membranes and trafficking machinery pathways using cellular models of PD that are amenable to detailed molecular analyses. We found that different species of aSyn can enter cells and form high molecular weight species, and that membrane binding properties are important for the internalization of aSyn. Once internalized, aSyn accumulates in intracellular inclusions. Interestingly, we found that internalization is blocked in the presence of dynamin inhibitors (blocked membrane scission), suggesting the involvement of the endocytic pathway in the internalization of aSyn. By screening a pool of small Rab-GTPase proteins (Rabs) which regulate membrane trafficking, we found that internalized aSyn partially colocalized with Rab5A and Rab7. Initially, aSyn accumulated in Rab4A-labelled vesicles and, at later stages, it reached the autophagy-lysosomal pathway (ALP) where it gets degraded. In total, our study emphasizes the importance of membrane binding, not only as part of the normal function but also as an important step in the internalization and subsequent accumulation of aSyn. Importantly, we identified a fundamental role for Rab proteins in the modulation of aSyn processing, clearance and spreading, suggesting that targeting Rab proteins may hold important therapeutic value in PD and other synucleinopathies."],["dc.identifier.doi","10.1186/s40478-018-0578-1"],["dc.identifier.pmid","30107856"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15309"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59304"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/98"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/36"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B08: Definition von Kaskaden molekularer Veränderungen bei Synucleinopathien während der Neurodegeneration"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Outeiro (Experimental Neurodegeneration)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Membrane binding, internalization, and sorting of alpha-synuclein in the cell"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Journal Article [["dc.bibliographiccitation.firstpage","e63474"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Wittenmayer, Nina"],["dc.contributor.author","Kremer, Thomas"],["dc.contributor.author","Hoeber, Jan"],["dc.contributor.author","Kiran Akula, Asha"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Islinger, Markus"],["dc.contributor.author","Kirsch, Joachim"],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Dresbach, Thomas"],["dc.contributor.editor","Dunaevsky, Anna"],["dc.date.accessioned","2018-09-28T09:31:14Z"],["dc.date.available","2018-09-28T09:31:14Z"],["dc.date.issued","2013"],["dc.description.abstract","With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites."],["dc.identifier.doi","10.1371/journal.pone.0063474"],["dc.identifier.pmid","23723986"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9347"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15843"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Mover is a homomeric phospho-protein present on synaptic vesicles"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3572"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Journal of Clinical Investigation"],["dc.bibliographiccitation.lastpage","3584"],["dc.bibliographiccitation.volume","125"],["dc.contributor.author","Benito-Garagorri, Eva"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Haider, Rashi"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Navarro-Sala, Magdalena"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Schuetz, Anna-Lena"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Luehrmann, Reinhard"],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:43:34Z"],["dc.date.available","2017-09-07T11:43:34Z"],["dc.date.issued","2015"],["dc.description.abstract","Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline."],["dc.identifier.doi","10.1172/JCI79942"],["dc.identifier.gro","3141833"],["dc.identifier.isi","000362303600031"],["dc.identifier.pmid","26280576"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1579"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1558-8238"],["dc.relation.issn","0021-9738"],["dc.title","HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017-11-21Journal Article [["dc.bibliographiccitation.firstpage","2118"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Cell reports"],["dc.bibliographiccitation.lastpage","2133"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Bharat, Vinita"],["dc.contributor.author","Siebrecht, Michael"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Reissner, Carsten"],["dc.contributor.author","Kohansal-Nodehi, Mahdokht"],["dc.contributor.author","Steubler, Vicky"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Ting, Jonathan T"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:44:43Z"],["dc.date.available","2019-07-09T11:44:43Z"],["dc.date.issued","2017-11-21"],["dc.description.abstract","Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the capture and spatial distribution of DCVs in hippocampal neurons. We found that DCVs are highly mobile and undergo long-range translocation but switch directions only at the distal ends of axons, revealing a circular trafficking pattern. Phosphorylation of serine 135 of Syt4 by JNK steers DCV trafficking by destabilizing Syt4-Kif1A interaction, leading to a transition from microtubule-dependent DCV trafficking to capture at en passant presynaptic boutons by actin. Furthermore, neuronal activity increased DCV capture via JNK-dependent phosphorylation of the S135 site of Syt4. Our data reveal a mechanism that ensures rapid, site-specific delivery of DCVs to synapses."],["dc.identifier.doi","10.1016/j.celrep.2017.10.084"],["dc.identifier.pmid","29166604"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14878"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59077"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT ACTIVITY"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","612"],["dc.title","Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.artnumber","15878"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Hurtado-Zavala, Joaquin I."],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Bolleyer, Christiane"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Stahlberg, Markus A."],["dc.contributor.author","Wagener, Robin J."],["dc.contributor.author","Anderson, Kristin"],["dc.contributor.author","Drenan, Ryan M."],["dc.contributor.author","Lester, Henry A."],["dc.contributor.author","Miwa, Julie M."],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-04-23T11:47:16Z"],["dc.date.available","2018-04-23T11:47:16Z"],["dc.date.issued","2017"],["dc.description.abstract","TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity."],["dc.identifier.doi","10.1038/ncomms15878"],["dc.identifier.gro","3142196"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14910"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13316"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017-05-19Journal Article [["dc.bibliographiccitation.artnumber","2149"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific reports"],["dc.bibliographiccitation.lastpage","19"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Murdoch, John D"],["dc.contributor.author","Koenig, Melanie"],["dc.contributor.author","Bharat, Vinita"],["dc.contributor.author","Markworth, Ronja"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-01-09T14:36:50Z"],["dc.date.available","2018-01-09T14:36:50Z"],["dc.date.issued","2017-05-19"],["dc.description.abstract","The sorting of activated receptors into distinct endosomal compartments is essential to activate specific signaling cascades and cellular events including growth and survival. However, the proteins involved in this sorting are not well understood. We discovered a novel role of EndophilinAs in sorting of activated BDNF-TrkB receptors into late endosomal compartments. Mice lacking all three EndophilinAs accumulate Rab7-positive late endosomes. Moreover, EndophilinAs are differentially localized to, co-traffic with, and tubulate, distinct endosomal compartments: In response to BDNF, EndophilinA2 is recruited to both early and late endosomes, EndophilinA3 is recruited to Lamp1-positive late endosomes, and co-trafficks with Rab5 and Rab7 in both the presence and absence of BDNF, while EndophilinA1 colocalizes at lower levels with endosomes. The absence of all three EndophilinAs caused TrkB to accumulate in EEA1 and Rab7-positive endosomes, and impaired BDNF-TrkB-dependent survival signaling cascades. In addition, EndophilinA triple knockout neurons exhibited increased cell death which could not be rescued by exogenous BDNF, in a neurotrophin-dependent survival assay. Thus, EndophilinAs differentially regulate activated receptor sorting via distinct endosomal compartments to promote BDNF-dependent cell survival."],["dc.identifier.doi","10.1038/s41598-017-02202-4"],["dc.identifier.pmid","28526875"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11603"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","EndophilinAs regulate endosomal sorting of BDNF-TrkB to mediate survival signaling in hippocampal neurons"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC